cho hình chóp S.ABCD đáy ABCD là hình bình hành tâm O và I,J,K lần lượt là trung điểm của SA,SD,OJ
a) tìm giao tuyến (SAB) và (SCD)
b) IK // (SBC)
Cho hình chóp S.ABCD có đáy là hình bình hành, tâm O. Gọi M, N lần lượt là trung điểm của AB, CD.
1. Xác định giao tuyến của (SBC) và (SAD).
2. Chứng minh MN // (SBC); MN // (SAD).
3. Gọi I là trung điểm của SA. Tìm giao điểm K của (INM) và SD.
4. Chứng minh SB, SC // (IMN).
5. Gọi H là trung điểm của IO. Chứng minh HK // (SBC).
giải giúp mình với
Cho hình chóp S.ABCD có đáy là hình bình hành tâm O.gọi M,N lần lượt là trung điểm của SA và CD. a,CMR:(OMN)//(SBC) b,Gọi I là trung điểm của SD, J là một điểm trên ABCD và cách đều AB,CD. chứng minh IJ//(SAB)
Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M; N’; P lần lượt là trung điểm của các cạnh BC; CD và SA. Gọi E là giao điểm của MN và AD; F là giao điểm của MN và AB. Tìm giao tuyến của (MNP) và (SBC)
A. ME
B. MH trong đó H là giao điểm của SD và PE
C. MK trong đó K là giao điểm của SB và PF
D. đáp án khác
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành tâm O. gọi M,N lần lượt là trung điểm của SA, SD
a, chứng minh răng (OMN) || (SBC)
b, Gọi P,Q lần lượt là trung điểm của AB, ON . Chứng minh rằng PQ || ( SBC)
18. Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của SD, SA, SB.
a/ Chứng minh MN//(SBC), NP//(SCD).
b/ Chứng minh (ONP)//(SCD), (OMN)//(SBC).
c/ Xác định giao điểm H của (OMN) và AB, giao điểm K của (OMN) và CD.
d/ Tỉnh tỉ số MN/HK.
cho hình chóp s.abcd có đáy abcd là hình bình hành. gọi i,j,k theo thứ tự là trung điểm của các cạnh ab, cd và sa. a) tìm giao tuyến của hai mp (SAB)và(SCD) b) CM: IJ // (SCD) c) tìm giao điểm của đường thẳng SD với mp(IJK)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M , K lần lượt là trung điểm của cạnh SC và BC ; N là trọng tâm ABC và F là giao điểm của AN và DC
. a) Tìm giao tuyến của mặt phẳng AMN và SCD .
b) Gọi E là giao điểm của SO và AM , I là giao điểm của SD và AMN . Chứng minh rằng N, E, I thẳng hàng và NI / / SBC
. c) Tính tỉ số diện tích của tam giác FKM và tam giác KAI .