Đáp án C
Ta có: Xét ∆ A D H vuông tại A có:
Xét ∆ S D H vuông tại H có:
S H K D C = 5 S A B C D 8 = 5 a 2 8 (đvdt)
⇒ V S . H K D C = 1 3 . 5 a 2 8 . a 3 = 5 a 3 3 24 (đvtt)
Đáp án C
Ta có: Xét ∆ A D H vuông tại A có:
Xét ∆ S D H vuông tại H có:
S H K D C = 5 S A B C D 8 = 5 a 2 8 (đvdt)
⇒ V S . H K D C = 1 3 . 5 a 2 8 . a 3 = 5 a 3 3 24 (đvtt)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SD = 13 2 . Hình chiếu của S lên mặt phẳng (ABCD) là trung điểm H của AB. Thể tích khối chóp S.ABCD là:
A. a 3 2 3
B. a 3 12
C. a 3 3
D. 2 a 3 3
Cho hình chóp S.ABCD có đáy ABCD hình vuông cạnh a. Hình chiếu của S lên mặt phẳng (ABCD) là trung điểm H của AD. Tính thể tích khối chóp S.ABCD biết SB = 3a/2.
A. a 3 3
B. a 3
C. a 3 2
D. 3 a 3 2
Hình chóp S.ABCD đáy là hình vuông cạnh a, SD = a 13 /2. Hình chiếu của S lên (ABCD) là trung điểm H của AB. Thể tích khối chóp là
A. a 3 2 3
B. 2 a 3 3
C. a 3 12
D. a 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SD= 3 a 2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Tính theo a thể tích khối chóp S.ABCD
Cho hình chóp S.ABCD có đáy là hình thang vuông ở A và D, cạnh đáy AB = a, cạnh đáy CD = 2a, AD = a. Hình chiếu vuông góc của S lên đáy trùng với trung điểm CD. Biết rằng diện tích mặt bên (SBC) bằng 3 a 2 2 . Thể tích của hình chóp S.ABCD bằng:
A. a 3 B. 3 a 3 2
C. 3 a 3 D. 3 2 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB=2a, AD=a. Hình chiếu của S lên đáy là trung điểm H của cạnh AB, góc tạo bởi SC và đáy bằng 45 0 . Tính thể tích khối chóp S.ABCD
Hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với trung điểm của AD, M là trung điểm của CD, cạnh bên SB hợp với đáy một góc 60 ° . Thể tích của khối chóp S.ABCD là
A. a 3 15 6
B. a 3 15 12
C. a 3 15 3
D. a 3 15 4
Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), tứ giác ABCD là hình thang vuông với cạnh đáy AD, BC. AD=3CB=3a, AB=a, SA=a 3 . Điểm I thỏa mãn A D → = 3 A I → , M là trung điểm SD, H là giao điểm của AM và SI. Gọi E, F lần lượt là hình chiếu của A lên SB, SC. Tính thể tích V của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD)
Hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với trung điểm của AD; M là trung điểm CD; cạnh bên SB hợp với đáy góc 60°. Thể tích của khối chóp S.ABM là:
A. a 3 15 3
B. a 3 15 4
C. a 3 15 6
D. a 3 15 12