Cho hình chóp S.ABCD có SA vuông góc (ABCD), ABCD là hình chữ nhật. AB=a, \(AD=a\sqrt{3}\). Biết rằng mp(SDC) tạo với đáy một góc bằng 60 độ.
a. Tính \(cos\left(\widehat{\left(SBC\right);\left(ABCD\right)}\right)\)
b: Tính \(tan\left(\widehat{\left(SBD\right);\left(ABCD\right)}\right)\)
Cho hình chóp S.ABCD có ABCD là hình chữ nhật, \(AB=a;AD=a\sqrt{3}\), cạnh bên SA vuông góc (ABCD). Biết mp(SBC) tạo với đáy một góc 60 độ. Tính \(cos\widehat{\left(SBC\right);\left(SCD\right)}\)
Cho hình chóp S.ABCD có S A ⊥ ( A B C D ) , ABCD là hình chữ nhật có AB =a, AD =2a, S A = a 3 . Tính tan của góc giữa hai mặt phẳng (SBD) và (ABCD).
A. 2 5 5
B. 3 5 2
C. 15 3
D. 15 2
Cho hình chóp S.ABCD có SA ⊥ (ABCD) là hình chữ nhật có AB=a, AD=2a, SA= a 3 Tính tan của góc giữa hai mặt phẳng (SBD) và (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a, AD = 2a. Cạnh bên SA vuông góc với đáy (ABCD), Tính tan của góc giữa hai ămtj phẳng (SBD) và (ABCD)
A . 1 5
B . 2 5
C . 5
D . 5 2
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang vuông tại $A$ và $B$, $BA=BC=a$, $AD=2a$. Cạnh bên $SA$ vuông góc với mặt đáy và $SA=a\sqrt{2}$.
a) (1 điểm) Chứng minh $\left( SAB \right) \perp \left( SAD \right)$.
b) (1 điểm) Tính góc giữa đường thẳng $SC$ và mặt phẳng $\left( SAB \right)$.
c) (1 điểm) Gọi $H$ là hình chiếu vuông góc của $A$ lên $SB$. Tính khoảng cách từ $H$ đến mặt phẳng $\left( SCD \right)$.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a, SA vuông góc với mặt phẳng (ABCD), S A = a 3 . Thể tích của khối chóp S.ABC là:
A. 2 a 3 3 3
B. 2 a 3 3
C. a 3 3
D. a 3 3 3
Cho hình chóp S.ABCD có ABCD là hình chữ nhật,AK là đường cao của tam giác SAB , biết SA vuông góc ( ABC ) , SA= a√6 , AB = a , AD = a√3 +) Tính khoảng cách giữa 2 đường thẳng SA và BD , AK và BC
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a. Biết SA vuông góc với mặt phẳng đáy và SA = 3a. Thể tích hình chóp S.ABCD là:
A. 6 a 3
B. 12 a 3
C. 2 a 3
D. 1 3 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D. Biết AB=2a, AD=DC=a. Cạnh bên SA vuông góc với đáy và \(SA=a\sqrt{2}\). CHọn khẳng định sai?
A: \(\widehat{\left(SBC\right);\left(ABCD\right)}=45^0\)
B: \(\widehat{\left(SDC\right);\left(BCD\right)}=60^0\)
C: Giao tuyến của (SAB) với (SCD) song song AB
D: \(\left(SBC\right)\perp\left(SAC\right)\)