Gọi E là trung điểm CD
Do N là trọng tâm SCD nên \(N\in SE\)
Gọi H là giao điểm AE và CD
trong mp (SAE), nối SN cắt SH tại I
\(\Rightarrow I=AN\cap\left(SBD\right)\)
Gọi E là trung điểm CD
Do N là trọng tâm SCD nên \(N\in SE\)
Gọi H là giao điểm AE và CD
trong mp (SAE), nối SN cắt SH tại I
\(\Rightarrow I=AN\cap\left(SBD\right)\)
Câu 3: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành b, Gọi M, N lần lượt là trung điểm của AB và SC. Tìm giao điểm của dường thẳng MN và (SBD) a, Tìm giao tuyến của (SAC) và (SBD)
Cho hình chóp S.ABCD với đáy ABCD là hình bình hành. Gọi lần lượt là trọng tâm của các tam giác SAD và SBC. Gọi M là giao điểm của SG và AD; N là giao điểm của SG’ và BC và O là giao điểm của BD và AN. Tìm giao tuyến của mặt phẳng (ADG’) và (SBD)
A. DI trong đó I là giao điểm của SO và AG’
B. DJ trong đó J là giao điểm của AG’ và SD
C. DH trong đó H là giao điểm của AD và BD
D. Tất cả sai
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm SA,N là điểm thuộc cạnh SB sao cho SN=2NB.
a)Tìm giao điểm P của MN với mặt phẳng (ABCD)
b) Chứng minh PC // (SBD)
c) Gọi H là giao điểm cảu (NPC) với SD và G là trọng tâm của tam giác SCD. Chứng minh (NHG) // (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M , K lần lượt là trung điểm của cạnh SC và BC ; N là trọng tâm ABC và F là giao điểm của AN và DC
. a) Tìm giao tuyến của mặt phẳng AMN và SCD .
b) Gọi E là giao điểm của SO và AM , I là giao điểm của SD và AMN . Chứng minh rằng N, E, I thẳng hàng và NI / / SBC
. c) Tính tỉ số diện tích của tam giác FKM và tam giác KAI .
cho hình bình hành sabcd có abcd là hình thang đáy lớn AB . gọi G là trọng tâm tam giác SAB. tìm N và P lần lượt là giao điểm mặt phẳng ADG với SB và SC
cho hình chóp s.abcd có đáy là hình bình hành. Gọi M,N lần lượt là trung điểm của các cạng SA,SC, và G là trọng tâm của △ABC
a) tìm giao tuyến của hai mặt phẳng (SAC) và (SBD)
b) tìm giao điểm BC và mặt phẳng (GMN)
c) xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (GMN)
Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành tâm O. Gọi M là trung điềm SB và N là điểm trên cạnh SA sao cho SN=2SA.
a) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD)
b) Tìm giao điểm H của AD với mặt phẳng (OMN), giao điểm K của BC với mặt phẳng (OMN)
c) Tìm thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (OMN).
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là một điểm trên cạnh SC và (a) là mặt phẳng chứa AM và song song với BD. a. Tìm giao tuyến của hai mặt phăng (SAC) và (SBD) ? b. Tìm các giao điểm E, F của mặt phẳng (a) lần lượt với các cạnh SB, SD.
cho hình chóp S ABCD có đáy ABCD là hình bình hành. Gọi M là một điểm trên cạnh sb sao cho SM = 2MB. Gọi g là trọng tâm SCD. Tìm giao điểm AG và SBD