Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB // CD. Gọi M, N lần lượt là trung điểm của AD và BC; gọi G là trọng tâm tam giác SAB. Thiết diện của hình chóp với mặt phẳng (MNG) là hình bình hành thì
A. AB = 3CD
B. AB = 2CD
C. CD = 3AB
D. CD = 2AB
Cho hình chóp S.ABCD với đáy ABCD là hình bình hành. Gọi lần lượt là trọng tâm của các tam giác SAD và SBC. Gọi M là giao điểm của SG và AD; N là giao điểm của SG’ và BC và O là giao điểm của BD và AN. Tìm giao tuyến của mặt phẳng (ADG’) và (SBD)
A. DI trong đó I là giao điểm của SO và AG’
B. DJ trong đó J là giao điểm của AG’ và SD
C. DH trong đó H là giao điểm của AD và BD
D. Tất cả sai
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB và CD. Gọi I ,J lần lượt là trung điểm của AD và BC, G là trọng tâm của tam giác SAB. Tìm giao tuyến của hai mặt phẳng (SAB) và (IJG).
Cho hình bình hành S.ABCD có đáy là ABCD là hình bình hành tâm O Gọi M N Q lần lượt trên SA SB SD Tìm giao điểm của đường thẳng SC và mặt phẳng mnq
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi G là trọng tâm của tam giác SAB; I và M lần lượt là trung điểm của AB và SD.
a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD)
b) Gọi N là giao điểm DI và AC. Chứng minh rằng NG song song với (SCD)
c)Tìm giao điểm E của SO và (CGM). Tính tỉ số \(\frac{SE}{SO}\)
Cho hình chóp S.ABCD có đáy ABCD là hình thang,AB là đáy lớn,O là giao điểm của AC và BD. Gọi M,N lần lược là trung điểm của SB và SB a) Chứng minh CD // (SAB) b) Tìm giao tuyến của hai mặt phẳng (CMN) và (ABCD) c) Gọi P là trung điểm của SC, I là giao điểm của OP và (CMN). Tính tie số IP/IO
Cho hình chóp S.ABCD có đáy ABCD là hình thang,AB là đáy lớn,O là giao điểm của AC và BD. Gọi M,N lần lược là trung điểm của SB và SD a) Chứng minh CD // (SAB) b) Tìm giao tuyến của hai mặt phẳng (CMN) và (ABCD) c) Gọi P là trung điểm của SC, I là giao điểm của OP và (CMN). Tính tỉ số IP/IO
Cho hình chóp S.ABCD có đáy ABCD là hình thang có cạnh đáy AB và CD. Gọi M, N lần lượt là trung điểm của các cạnh AD, BC. G là trọng tâm của tam giác SAB. Thiết diện của hình chóp
cắt bởi (IJG) là một tứ giác. Tìm điều kiện của AB, CD để thiết diện đó là hình bình hành?

A. AB=3CD
B. AB=2CD
C. CD=2AB
D. CD=3AB
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm SA,N là điểm thuộc cạnh SB sao cho SN=2NB.
a)Tìm giao điểm P của MN với mặt phẳng (ABCD)
b) Chứng minh PC // (SBD)
c) Gọi H là giao điểm cảu (NPC) với SD và G là trọng tâm của tam giác SCD. Chứng minh (NHG) // (ABCD)