Câu 4: (0.5 điểm) ) Cho hình chóp S.ABC , gọi M, N lần lượt là trung điểm của các cạnh SA, SC. Biết G là trọng tâm của tam giác ABC. Tìm giao điểm của đường thẳng SG và mặt phẳng (BMN)
Cho hình chóp S.ABC ; gọi H và K lần lượt là trọng tâm tam giác SAB và SBC; M là trung điểm CA và điểm I thuộc SM sao cho SI> SM. Gọi E là giao điểm của IK và MN ; F là giao điểm của Ih và MP. Tìm giao tuyến của (IHK) và (BAC)
A. KE
B. KF
C. KJ trong đó J là giao điểm của EF và BC
D. KT trong đó T là giao điểm của IH và SB
Cho hình chóp s.abcd đáy là hbh. Gọi H K lần lượt là trung điểm SA SC. G là trọng tâm tam giác ABC a)GHK và ABCD b) Tìm giao điểm M của SD và GHK c) Gọi E là trung điểm của HK.C/m G E M thẳng hàng
Cho hình chóp s.abcd , có đáy ABCD là hbh. Gọi H, K lần lượt là trung điểm SA, SC. Gọi G là trọng tâm tam giác ABC.
a) GHK và ABCD
b) Tìm giao điểm M của SD và GHK
c) Gọi E là trung điểm của HK. C/m G, E, M thẳng hàng
Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB là đáy lớn. Gọi M là trung điểm của đoạn AB, E là giao điểm của hai cạnh của hình thang ABCD và G là trọng tâm của tam giác ECD.
(a) Chứng minh rằng bốn điểm S, E, M, G cùng thuộc một mặt phẳng (α) và mặt phẳng này cắt cả hai mặt phẳng (SAC) và (SBD) theo cùng một giao tuyến d.
(b) Xác định giao tuyến của hai mặt phẳng (SAD) và (SBC).
(c) Lấy một điểm K trên đoạn SE và gọi C' = SC ∩KB, D'=SD ∩KA. Chứng minh rằng hai giao điểm của AC' và BD' thuộc đường thẳng d nói trên.
Cho hình chóp S.ABC có đáy ABC là tam giác đều, I là trung điểm của BC, SA vuông góc với (ABC). Gọi H, O lần lượt là trực tâm của tam giác SBC, ABC, K là giao điểm của hai đường thẳng SA và OH. Chứng minh rằng:
a) OH vuông góc với (SBC)
b) SO vuông góc với IK.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M , K lần lượt là trung điểm của cạnh SC và BC ; N là trọng tâm ABC và F là giao điểm của AN và DC
. a) Tìm giao tuyến của mặt phẳng AMN và SCD .
b) Gọi E là giao điểm của SO và AM , I là giao điểm của SD và AMN . Chứng minh rằng N, E, I thẳng hàng và NI / / SBC
. c) Tính tỉ số diện tích của tam giác FKM và tam giác KAI .
Cho hình chóp S.ABC có đấy ABC là tam giác đều cạnh a, SA = SB = SC = 2a. Gọi o là trung điểm AC, G là trọng tâm tam giác ABC a) chứng minh (SGO) vuông góc với (ABC) b) tính góc giữa hai mặt phẳng (SAB) và (ABC) c) tính khoảng cách giữa AB và SC
Cho hình chóp S.ABCD có đáy là hình thang ABCD, đáy lớn là AD và AD = 2BC. Gọi O là giao điểm của AC và BD, G là trọng tâm của tam giác SCD.
a) Chứng minh rằng OG // (SBC)
b) Cho M là trung điểm của SD. Chứng minh rằng CM // (SAB).
c) Giả sử điểm I nằm trong đoạn SC sao cho SC = 3SI/2. Chứng minh rằng SA // (BID).