Chọn B
Phương pháp
Góc giữa đường thẳng và mặt phẳng (nhỏ hơn 90 o ) là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng.
Cách giải:



Chọn B
Phương pháp
Góc giữa đường thẳng và mặt phẳng (nhỏ hơn 90 o ) là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng.
Cách giải:



Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, A B = a , S A = S B = S C . Góc giữa đường thẳng SA và mặt phẳng (ABC) bằng 45 ° . Tính khoảng cách từ điểm S đến mặt phẳng (ABC)
A. a 3 3
B. a 2 2
C. a 2
D. a 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. Biết SA vuông góc với mặt phẳng (ABC), AB = a, B C = a 3 , SA = a. Một mặt phẳng (α) qua A vuông góc SC tại H và cắt SB tại K. Tính thể tích khối chóp S.AHK theo a

A. V S . A H K = a 3 3 20
B. V S . A H K = a 3 3 30
C. V S . A H K = a 3 3 60
D. V S . A H K = a 3 3 90
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. Biết SA vuông góc với mặt phẳng (ABC), AB = a, BC = a 3 , SA = a. Một mặt phẳng ( α ) qua A vuông góc SC tại H và cắt SB tại K. Tính thể tích khối chóp S.AHK theo a.




Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A , mặt phẳng (SBC) vuông góc với mặt phẳng (ABC) và SA=SB=AB=AC=a; SC=a 2 . Diện tích xung quanh mặt cầu ngoại tiếp hình chóp S.ABC bằng:
A. 2 πa 2
B. πa 2
C. 8 πa 2
D. 4 πa 2
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại đỉnh B, AB = a, SA = 2a và SA vuông góc với mặt phẳng đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính thể tích khối tứ diện S.AHK.

A. V = 4 a 3 15
B. V = 8 a 3 45
C. V = 8 a 3 15
D. V = 4 a 3 5
Cho hình chóp S. ABC có đáy ABC là tam giác cân tại A, biết AB = a; SA = SB = a và mặt phẳng (SBC) vuông góc với mặt phẳng (ABC). Tính SC biết bán kính mặt cầu ngoại tiếp hình chóp S.ABC bằng a.

![]()
![]()

Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B, SA=3a và SA vuông góc với mặt phẳng đáy, SB tạo với mặt phẳng đáy một góc 60 o . Tính thể tích khối chóp S.ABC.
A. 3 a 3
B. 27 a 3
C. 9 a 3
D. 3 a 3 2
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C, mặt phẳng (SAB) vuông góc mặt phẳng (ABC), SA = SB, I là trung điểm AB. Góc giữa đường thẳng SC và mặt phẳng (ABC) là
A. Góc S C A ^
B. Góc S C I ^
C. Góc I S C ^
D. Góc S C B ^
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C, mặt phẳng (SAB) vuông góc mặt phẳng (ABC), SA=SB, I là trung điểm AB. Góc giữa đường thẳng SC và mặt phẳng (ABC) là
A. S C A ^
B. S C I ^
C. I S C ^
D. S C B ^