Cho hình chóp S. ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt đáy. Gọi M là trung điểm BC. Mặt phẳng (P) đi qua A và vuông góc với SM cắt SB, SC lần lượt tại E, F. Biết V S . A E F = 1 4 V S . A B C . Tính thể tích V của khối chóp S. ABC.
A. a 3 2
B. a 3 8
C. 2 a 3 5
D. a 3 12
Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M là điểm di động trên cạnh SC (M không trùng S và C), mặt phẳng α chứa đường thẳng AM song song với BD lần lượt cắt các cạnh SB, SD tại E và F. Giá trị T = S B S E + S D S F - S C S M bằng
Cho hình chóp S.ABC có S A = S B = S C = a , A S B ^ = B S C ^ = C S A ^ = α . Gọi (b) là mặt phẳng đi qua A và các trung điểm của SB, SC. Tính diện tích thiết diện S của hình chóp cắt bởi mặt phẳng (b).
A. S = a 2 2 7 cos 2 α − 16 cos α + 9
B. S = a 2 2 7 cos 2 α − 6 cos α + 9
C. S = a 2 8 7 cos 2 α − 6 cos α + 9
D. S = a 2 8 7 cos 2 α − 16 cos α + 9
Cho hình chóp tứ giác S. ABCD đáy là hình bình hành có thể tích bằng V. Lấy điểm B', D' lần lượt là trung điểm của cạnh SB và SD. Mặt phẳng qua (AB'D') cắt cạnh SC tại C'. Khi đó thể tích khối chóp S. AB'C'D' bằng:
A. V 3
B. 2 V 3
C. V 3 3
D. V 6
Cho tứ diện đều S.ABC có cạnh bằng 1. Mặt phẳng (P) đi qua điểm S và trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Tính thể tích nhỏ nhất Vmin của khối tứ diện SAMN.
Cho tứ diện ABCD có BCD là tam giác đều cạnh 1, AB = 2. Xét M là điểm thay đổi trên cạnh BC. Mặt phẳng α qua M song song với AB và CD lần lượt cắt các cạnh BD, AD, AC tại N, P, Q. Giá trị nhỏ nhất của biểu thức S = M P 2 + N Q 2 bằng
Cho hình chóp đều S. ABCD có độ dài cạnh đáy bằng α . Gọi G là trọng tâm tam giác SAC . Mặt phẳng chứa AB và đi qua G cắt các cạnh SC, SD lần lượt tại M và N. Biết mặt bên của hình chóp tạo với đáy một góc bằng 60 ° . Thể tích khối chóp S.ABCD bằng
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA = a 2 . Một mặt phẳng đi qua A vuông góc với SC cắt SB, SD, SC lần lượt tại B', D', C'. Thể tích khối chóp S. AB'C'D' là:
A. V = 2 a 3 3 9
B. V = 2 a 3 2 3
C. V = a 3 2 9
D. V = 2 a 3 3 3
Cho hình chóp tứ giác đều S. ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với mặt đáy một góc 600. Mặt phẳng (P) chứa AB và đi qua trọng tâm G của tam giác SAC cắt SC, SD lần lượt tại M và N. Thể tích khối chóp S. ABMN là:
A. a 3 3 2
B. a 3 3 4
C. a 3 3 3
D. a 3 3