Đáp án B.
Ta có S A ⊥ ( A B C ) A B ⊂ ( A B C ) B C ⊂ ( A B C ) ⇒ S A ⊥ A B và S A ⊥ B C . Vậy A, C đúng.
Do Δ A B C vuông tại B nên B C ⊥ A B .
Ta có B C ⊥ S A , S A ⊂ S A B B C ⊥ A B , A B ⊂ S A B S A ∩ A B = A ⇒ B C ⊥ S A B , S B ⊂ S A B ⇒ B C ⊥ S B
Vậy B đúng.