Cho hình chóp S.ABC có A S B ^ = C S B ^ = 60 ∘ , A S C ^ = 90 ∘ , S A = S B = S C = a . Tính khoảng cách d từ A đến mặt phẳng (SBC).
A. d = 2 a 6 .
B. d = a 6 .
C. d = 2 a 6 3 .
D. d = a 6 3 .
Cho hình chóp S.ABC có các góc tại đỉnh S cùng bằng 60 ° , S A = a , S B = 2 a , S C = 3 a . Tính khoảng cách từ đỉnh A đến mặt phẳng (SBC)
A. a 3
B. a 6
C. a 6 3
D. a 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, A B = a , A C = a 3 , B C = 2 a . Tam giác SBC cân tại S, tam giác SCD vuông tại C. Khoảng cách từ D đến mặt phẳng (SBC) bằng a 3 3 . Chiều cao SH của hình chóp là
A. a 15 5
B. a 15 3
C. 2 a 15
D. a 5 3
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, A B = a , A C = a 3 , B C = 2 a . Tam giác SBC cân tại S, tam giác SCD vuông tại C. Khoảng cách từ D đến mặt phẳng (SBC) bằng a 3 3 . Chiều cao SH của hình chóp là
A. a 15 5
B. a 15 3
C. 2 a 15
D. a 5 3
Trong không gian Oxyz cho mặt cầu
S : x 2 + y 2 + z 2 - 2 x - 4 y + 6 z - 13 = 0 và đường thẳng d : x + 1 1 = y + 2 1 = z - 1 1 . Tọa độ điểm M trên đường thẳng d sao cho từ M kẻ được 3 tiếp tuyến MA, MB, MC đến mặt cầu (S) (A, B, C là các tiếp điểm) thỏa mãn A M B ⏜ = 60 ° , B M C ⏜ = 90 ° , C M A ⏜ = 120 ° có dạng M (a;b;c) với a <0. Tổng a+b+c bằng:
A. 10 3 .
B. 2
C. - 2
D. 1
Cho hình chóp S.ABC có ASB=CSB= 60 ° và SA=SB=SC=a Tính khoảng cách d từ điểm A đến mặt phẳng (SBC)
A. d = 2 a 6
B. d = a 6 3
C. d = 2 a 6 3
D. d = a 6
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1. Biết khoảng cách từ A đến mặt phẳng (SBC) là 6 4 , từ B đến mặt phẳng (SAC) là 15 10 từ C đến mặt phẳng (SAB) là 30 20 và hình chiếu vuông góc của S xuống đáy nằm trong tam giác ABC. Thể tích khối chóp S.ABC bằng
A. 1 36
B. 1 48
C. 1 12
D. 1 24
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu ( S ) : x 2 + y 2 + z 2 - 2 x - 4 y + 6 z - 13 = 0 và đường thẳng d : x + 1 1 = y + 2 1 = z - 1 1 . Tọa độ điểm M trên đường thẳng d sao cho từ M có thể kẻ được 3 tiếp tuyến MA, MB, MC đến mặt cầu (S) (A, B, C là các tiếp điểm ) thỏa mãn A M B ^ = 60 ° , B M C ^ = 90 ° ; C M A ^ = 120 ° có dạng M(a;b;c) với a<0. Giá trị T=a+b+c bằng:
A. T=1
B. T = 10 3
C. T=2
D. T=-2
Cho hình chóp S.ABCD có ABCD là hình thang vuông tại A và D, AB=AD=a, CD=2a. Hình chiếu của S lên mặt phẳng (ABCD) trùng với trung điểm của BD Biết thể tích tứ diện SBCD bằng a 3 6 . Tính khoảng cách từ A đến mặt phẳng (SBC) là:
A. a 3 2
B. a 2 6
C. a 3 6
D. a 6 4
Trong không gian Oxyz, cho mặt cầu S : x 2 + y 2 + z 2 - 2 x - 4 y + 6 z - 13 = 0 và đường thẳng d : x + 1 1 = y + 2 1 = z - 1 1 . Điểm M(a;b;c)(với a < 0) trên đường thẳng d sao cho từ M kẻ được ba tiếp tuyến MA, MB, MC đến mặt cầu (S) ( A, B, C là các tiếp điểm) thõa mãn các góc A M B ^ = 60 ° , B M C ^ = 90 ° , C M A ^ = 120 ° . Tính abc bằng
A. 4
B. 10 3
C. -2
D. 2