Trong không gian Oxyz, cho mặt cầu (S): (x-1)2+ (y-2)2+ z2=25 và một điểm A(a,b,c) nằm trên mặt cầu (S). Từ A vẽ ba tia đôi một vuông góc với nhau cắt mặt cầu (S) tại điểm thứ hai là M, N, P. Biết rằng mặt phẳng (MNP) luôn đi qua một điểm cố định K(1;1;3). Giá trị của biểu thức a + 7b + c bằng
A. 3
B. 4
C. 6
D. 9
Cho hình chóp S.ABC có mỗi mặt bên là một tam giác vuông và S A = S B = S C = a . Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC; D là điểm đối xứng của S qua P. I là giao điểm của đường thẳng AD với mặt phẳng (SMN). Tính theo a thể tích của khối tứ diện MBSI.
A. a 3 12 .
B. a 3 36 .
C. a 3 6 .
D. 2 a 3 12 .
Cho hình chóp tam giác đều S.ABC đỉnh S, có độ dài cạnh đáy bằng a. Gọi M, N lần lượt là trung điểm các cạnh SB và SC. Tính theo a diện tích tam giác AMN biết rằng mặt phẳng (AMN) vuông góc với mặt phẳng (SBC).
A. a 2 7 9
B. a 2 10 16
C. a 2 10 8
D. a 2 5 8
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại đỉnh B với AC = 2a, BC = a. Đỉnh S cách đều các điểm A, B, C. Biết góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 60 ° . Khoảng cách từ trung điểm M của SC đến mặt phẳng (SAB) bằng
A. a 39 13
B. 3 a 13 13
C. a 39 26
D. a 13 26
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 1, góc giữa cạnh bên và mặt đáy bằng 60 ∘ Gọi A ' , B ' , C ' lần lượt là các điểm đối xứng của A,B,C qua S. Thể tích của khối đa diện A B C A ' B ' C ' bằng
A. V = 2 3 3
B. V = 2 3
C. V = 4 3 3
D. V = 3 2
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 1, góc giữa cạnh bên và mặt đáy bằng 60 0 . Gọi A',B',C' lần lượt là các điểm đối xứng của A,B,C qua S. Thể tích của khối đa diện ABCA'B'C' bằng
A. V = 2 3 3
B. V = 2 3
C. V = 4 3 3
D. V = 3 3
Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc với nhau và SA = SB = SC = a . Gọi B′,C′ lần lượt là hình chiếu vuông góc của S trên AB,AC. Tính thể tích hình chóp S.AB′C′.
A. a 3 2
B. a 3 6
C. a 3 24
D. a 3 12
Trong không gian tọa độ Oxyz, cho hai điểm A(2;1;3), B(6;5;5). Gọi (S) là mặt cầu có đường kính AB. Mặt phẳng (P) vuông góc với đoạn AB tại H sao cho khối nón đỉnh A và đáy là hình tròn tâm H (giao của mặt cầu (S) và mặt phẳng (P) có thể tích lớn nhất, biết rằng (P)+2x+by+cz+d=0 với b,c,d∈Z. Tính S=b+c+d.
A. S = -18.
B. S = -11
C. S = -24
D. S = -14
Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A (2;1;3), B (6;5;5). Gọi (S) là mặt cầu đường kính AB Mặt phẳng (P) vuông góc với AB tại H sao cho khối nón đỉnh A và đáy là hình tròn tâm H (giao của mặt cầu (S) và mặt phẳng (P)) có thể tích lớn nhất, biết rằng (P): 2x + by + cz + d = 0 với b,c,d ∈ Z. Tính S = b + c + d .
A. S = 18
B. S = -18
C. S = -12
D. S = 24