Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hình chóp S.ABC có 4 đỉnh đều nằm trên một mặt cầu, SA = a, SB = b, SC = c và ba cạnh SA, SB, SC đôi một vuông góc. Tính theo a, b, c bán kính mặt cầu đó. 

A. 1 2 a 2 + b 2

B. 1 2 b 2 + c 2

C. 1 2 c 2 + a 2

D. 1 2 a 2 + b 2 + c 2

Cao Minh Tâm
25 tháng 5 2017 lúc 9:38

Đáp án D

Gọi I là tâm mặt cầu ngoại tiếp hình chóp tam giác S.ABC. Hạ IJ vuông góc với (SAB)  . Vì J các đều 3 điểm S; A; B nên J cũng cách đều ba điểm S; A; B

Vì tam giác SAB vuông tại đỉnh S nên J là trung điểm của AB.

Ta có S J = 1 2 A B = 1 2 a 2 + b 2

Do SC vuông góc với (SAB) nên IJ//SC.

Gọi H là trung điểm của SC, ta có S H = I J = c 2

Do vậy I S 2 = I J 2 + S J 2 = a 2 + b 2 + c 2 4 và bán kính hình cầu ngoại tiếp S.ABC   R = I S = 1 2 a 2 + b 2 + c 2


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết