M là trọng tâm của tam giác CBD nên M thuộc trung tuyến CO, với O là trung điểm của BD, ABCD là hình bình hành nên O cũng là trung điểm của AC. Do đó ta có:
C M C A = 1 3 = C N C S ⇒ M N //SA
Đáp án A
M là trọng tâm của tam giác CBD nên M thuộc trung tuyến CO, với O là trung điểm của BD, ABCD là hình bình hành nên O cũng là trung điểm của AC. Do đó ta có:
C M C A = 1 3 = C N C S ⇒ M N //SA
Đáp án A
Cho hình chóp S. ABCD với đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh SA, SB, SC, SD. Đường thẳng nào sau đây không song song với đường thẳng MN?
A. AB
B. CD
C. PQ
D. SC
Cho hình chóp S.ABCD với đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh SA, SB, SC, SD. Đường thẳng nào sau đây không song song với đường thẳng MN?
A. AB
B. CD
C. PQ
D. SC
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm SA,N là điểm thuộc cạnh SB sao cho SN=2NB.
a)Tìm giao điểm P của MN với mặt phẳng (ABCD)
b) Chứng minh PC // (SBD)
c) Gọi H là giao điểm cảu (NPC) với SD và G là trọng tâm của tam giác SCD. Chứng minh (NHG) // (ABCD)
Cho hình chóp S. ABCD, M và N là hai điểm thuộc cạnh AB và CD, α là mặt phẳng qua MN và song song với SA. Tìm điều kiện của MN để thiết diện là một hình thang.
A. MN= BC
B. MN// AD
C. MN// BC
D. tất cả sai
Cho hình chóp S.ABCD có đáy là hình thang ABCD với đáy là AD và BC. Biết AD = a, BC = b. Gọi I và J lần lượt là trọng tâm của các tam giác SAD và SBC. Mặt phẳng (ADJ) cắt SB, SC lần lượt tại M, N. Mặt phẳng (BCI) cắt SA, SD lần lượt tại P, Q.
a) Chứng minh MN song song với PQ.
b) Giả sử AM cắt BP tại E; CQ cắt DN tại F. Chứng minh rằng EF song song với MN và PQ. Tính EF theo a và b.
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. M là một điểm di động trên đoạn AB. Một mặt phẳng (α) đi qua M và song song với SA và BC; (α) cắt SB, SC và CD lần lượt tại N, P và Q
a) Tứ giác MNPQ là hình gì?
b) Gọi I là giao điểm của MN và PQ. Chứng minh rằng I nằm trên một đường thẳng cố định.
Cho hình chóp S. ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SA, N là điểm trên đoạn SB sao cho SN = 2NB. Mặt phẳng chứa MN cắt đoạn SD tại Q và cắt đoạn SC tại P. Tỉ số V S . M N P Q V S . A B C D lớn nhất bằng
A. 2 5
B. 1 3
C. 1 4
D. 3 8
Cho hình chóp SABCD có đáy hình thang AD là đáy lớn
N, M lần lượt là 2 điểm trên SB, Sd sao cho MN không song song BD
a) SA giao (MCD)
b) MN giao (SAC)
c) MN giao (ABCD)
d) SA giao (MNC)
Cho hình chóp tứ giác S.ABCD có AB và CD không song song với nhau. Gọi M, N lần lượt là trung điểm của SC và SA. a, Chứng minh MN //(ABCD). Tìm giao tuyến của (SAC) và (SBD). b, Tìm giao điểm của SD và mặt phẳng (MAB). (câu a chứng minh sơ sơ là đc ạ)