Có hình chóp S. ABCD có đáy là hình vuôn cạnh a . SA vuông góc (ABCD) và SA= a căn6/3
a. Chứng minh CD vuông góc (SAD)
b. P, Q lần lượt là hình chiếu vuông góc của A lên SB , SD . chứng minh PQ vuông góc SC
C. Tính góc SC và (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a và SA ⊥ (ABCD).
a) Chứng minh BD ⊥ SC.
b) Chứng minh (SAB) ⊥ (SBC).
c) Cho SA = (a√6)/3. Tính góc giữa SC và mặt phẳng (ABCD).
cho hình chóp S.ABCD có đáy là hình vuông cạnh \(a\sqrt{2}\), SA=SB=SC=SD=2a
a) tính góc giữa đường thẳng SC và AB
b) tính diện tích hình chiếu vuông góc của tam giác SAB trên mặt phẳng (ABCD)
Hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 1 và AD = 3 . Cạnh bên SA vuông góc với mặt phẳng đáy và SC tạo với mặt phẳng (ABCD) một góc 60 0 . Tính thể tích V của khối chóp S,ABCD
A. V = 3
B. V = 2
C. V = 6
D. V = 1
Hình chóp SABCD có ABCD là hình vuông SA vuông góc ABCD SA = a√6/3
a,Cm BD vuông góc SC
b, cm SAB vuông góc SBC
c, góc giữa sc và abcd
d, khoảng cách từ a đến scd
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và cạnh bên SA vuông góc với mặt phẳng (ABC). Biết rằng AB = a, AC = a 3 và S B A ^ = 60 0 . Gọi H là hình chiếu vuông góc của A trên cạnh SC. Tính tỷ số thể tích của hai khối SABH và HABC.
A . 3 4
B . 1 12
C . 3 2
D . 7 4
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt đáy (ABCD), SC = a 5 . Tính thể tích khối chóp.
A . V = a 3 3 3
B . V = a 3 3 6
C . V = a 3 3
D . V = a 3 3 9
Cho khối chóp tứ giác đều S.ABCD, gọi α mặt phẳng qua A và vuông góc SC. Biết rằng diện tích thiết diện tạo bởi α là hình chóp bằng nửa diện tích đáy ABCD. Tính góc φ tạo bởi cạnh bên SC và mặt đáy.
A. φ = a r c sin 33 + 1 8
B. φ = a r c sin 33 - 1 8
C. φ = a r c sin 29 + 1 8
D. φ = a r c sin 29 - 1 8
Cho hình chóp SABCD có đáy là hình thang vuông tại A và D. AB=2a, AD=DC=a. Kẻ AH vuông góc với SC (H thuộc SC). E là trung điểm của AB. Sa vuông góc với (ABCD) và SA=a căn 3. Tính góc giữa a)(SBC) và (ABCD) b)(SAD) và (SAC) c)(SBC) và (SCD)