Cho mặt cầu (S) bán kính R = 5 c m . Mặt phẳng P cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 π cm . Bốn điểm A, B, C, D thay đổi sao A, B, C cho thuộc đường tròn (C), điểm D thuộc (S) (D không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 32 3 c m 3
B. 60 3 c m 3
C. 20 3 c m 3
D. 96 3 c m 3
Cho mặt cầu (S) có bán kính R = 5 (cm). Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng (cm). Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn (C), điểm D thuộc (S) (D không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Thể tích lớn nhất của khối tự diện ABCD bằng bao nhiêu?
A. 32 3 c m 2
B. 60 3 c m 2
C. 20 3 c m 2
D. 96 3 c m 2
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A - 1 ; 0 ; 1 , B 1 ; 2 ; - 1 , C - 1 ; 2 ; 3 và I là tâm đường tròn ngoại tiếp tam giác ABC. Tính bán kính R mặt cầu (S) có tâm I và tiếp xúc với mặt phẳng (Oxz).
A. R = 4
B. R = 3
C. R = 5
D. R = 2
Cho tam giác ABC cân tại A, đường cao AH bằng 10cm, đường cao BK bằng 12cm. Độ dài cạnh đáy BC là cm.
Cho tam giác ABC cân tại A có BC = 24cm , AC = 20cm.
Độ dài bán kính đuờng tròn tâm O nội tiếp tam giác ABC là cm.
Cho mặt cầu (S) bán kính R = 5 c m . Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 π (cm). Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn (C), điểm D thuộc (S)(D không thuộc đường tròn (C) và tam giác ABC đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 10 3 c m 3
B. 15 3 c m 3
C. 32 3 c m 3
D. 40 3 c m 3
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;0;-1) và mặt phẳng P : x + y - z - 3 = 0 . Gọi (S) là mặt cầu có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho diện tích tam giác OIA bằng 17 2 . Tính bán kính R của mặt cầu (S)
A. R = 3
B. R = 9
C. R = 1
D. R = 5
Trong không gian với hệ tọa độ Oxyz, cho điểm A (1;0;-1) và mặt phẳng P : x + y - z - 3 = 0 . Gọi (S) là mặt cầu có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho diện tích tam giác OIA bằng 17 2 . Tính bán kính R của mặt cầu (S).
A. R = 3
B. R = 9
C. R = 1
D. R = 5
Trong không gian với hệ tọa độ Oxyz, cho điểm A 1 ; 0 ; - 1 và mặt phẳng P : x + y - z - 3 = 0 . Gọi (S) là mặt cầu có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho diện tích tam giác OIA bằng 17 2 . Tính bán kính R của mặt cầu (S).
A. R = 3
B. R = 9
C. R = 1
D. R = 5
Cho ba hình cầu tiếp xúc ngoài nhau từng đôi một và cùng tiếp xúc với một mặt phẳng. Các tiếp điểm của các hình cầu trên mặt phẳng lập thành tam giác có các cạnh bằng 4, 2 và 3. Tích bán kính của ba hình cầu trên là:
A. 12
B. 3
C. 6
D. 9