Xét ΔOAC và ΔOHD có
\(\widehat{OAC}=\widehat{OHD}\)
OA=OH
\(\widehat{AOC}=\widehat{HOD}\)
Do đó: ΔOAC=ΔOHD
Suy ra: OC=OD
hay C đối xứng với D qua O
Xét ΔOAC và ΔOHD có
\(\widehat{OAC}=\widehat{OHD}\)
OA=OH
\(\widehat{AOC}=\widehat{HOD}\)
Do đó: ΔOAC=ΔOHD
Suy ra: OC=OD
hay C đối xứng với D qua O
Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt các cạnh AB và CD theo thứ tự ở M và N. Chứng minh rằng điểm M đối xứng với điểm N qua O.
Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt các cạnh AB và CD theo thứ tự ở M và N. Chứng minh rằng điểm M đối xứng với điểm N qua O.
Hướng dẫn:Ta có:ABCD là hình bình hành(gt) =>..............................................
Chứng minh:∆BOM = ∆DON (g.c.g)
Chứng minh: O là trung điểm của MN
=> M đối xứng với N qua O(đpcm)
Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt các cạnh AB và CD theo thứ tự ở M và N. Chứng minh rằng điểm M đối xứng với điểm N qua O.
Cho hình bình hành ABCD , O là giao điểm của hai đường chéo . Một đường thẳng đi qua O cắt cạnh AB và CD theo thứ tự ở M và N . Chứng minh rằng điểm M đối xứng với điểm N qua O .
Cho hình bình hành ABCD. Gọi O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt các cạnh AD, BC ở E và F. Chứng minh E và F đối xứng với nhau qua O.
Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt các cạnh đối AD, BC ở E, F. Chứng minh E và F đối xứng với nhau qua điểm O.
Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt các cạnh đối AD, BC ở E, F. Chứng minh E và F đối xứng với nhau qua điểm O.
cho hình bình hành abcd, o là giao điểm 2 đường chéo. gọi m,n thứ tự là trung điểm của od và ob. am cắt cd tại e, cn cắt ab tại f. g là điểm đối xứng của e qua m. c/m:
a) amcn, aecf là hình bình hành.
b) e và f đối xứng qua o.
c) ge=ga.
d) nếu de=4cm thì ab=?
cho hình thang ABCD . O là giao điểm của 2 đường chéo 1 đường thẳng đi qua O cắt 2 cạnh AD , BC ở M và N
chứng minh rằng M và N đối xứng nhau qua O