1: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
1: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
1.Cho hình bình hành ABCD, AC cắt BD ở O. Trên đường chéo AC lấy E,F để AE=EF=FC. DE cắt AB ở M, BF cắt Cd ở N. CMR:
a) BFDE là hình bình hành
b) O là trung điểm của MN
2. Cho hình bình hành ABCD. Gọi E,F lần lượt là trung điểm của AB, AD. Đường thẳng EF cắt các tia CD,CB ở H và K. CMR:
a) FH = EK
b) tan giác CEF và tam giác HCK có cùng trọng tâm
1. Cho hình bình hành ABCD có AB= 2AD. Gọi M, N theo tứ tự là trung điểm của các cạnh AB, CD. Gọi P và Q lần lượt là giao điểm của BN với CM và của AN với DM
a. Tứ giác AMND là hình gì? Vì sao?
b. Chứng minh: tứ giác MPNQ là hình chữ nhật
c. Tìm điều kiện của tứ giác ABCD để MPNQ là hình vuông
d. Chứng minh: bốn đường thẳng AC, BD, MN, QP đồng qui
2. Cho hình bình hành ABCD. Kẻ AN, CM vuông góc với BD, N và M thuộc BD
a. Chứng minh DN = BM
b. Chứng minh Tứ giác ANCM là hình bình hành
c. Gọi K là điểm đối xứng với A qua N. Tứ giác DKCB là hình gì? Vì sao?
d. Tia AM cắt tia KC tại P. Chứng minh các đường thẳng AC, PN, KM đồng qui
Cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE = DF
1) Chứng minh: AE // DF; BE // CF
2) Chứng minh: BE = CF
3) Chứng minh: Tứ giác AEFD là hình bình hành
4) Chứng minh: Tứ giác BEFC là hình bình hành
Có thể giải giúp mình không ạ? Mình cảm ơn
1Cho tam giác đều ABC, m là điểm nằm trong tam giác. Cm MA,MB,MC là độ dài 3 cạnh của tam giác
2Cho hình vuông ABCD. Trên cạnh AB lấy điểm M tùy ý. Dựng phía ngoài hình vuông ABCD là AMEF
a, chứng minh DM vuônh góc với BF
b, gọi H là giao điểm của DM và BF. Chứng minh C,H,E thẳng hàng
4 cho tam giac ABC và điểm B nằm trong tam giác đó. Gọi M,N,Q theo thứ tự là trung điểm của AB, AC,BC. Gọi A',B',C' theo thứ tự là điểm đối xứng của P qua Q,N,M
a. Cm A'B'AB là hình bình hành
b. Cm CC',AA',BB' đồng quy tại 1 điểm
Bà con nào biết giúp tui nhen.
Giờ tui cần lời giải gấp
cho hình bình hành ABCD và O là giao điểm của AC và BD trên đường chéo AC lấy 2 điểm M và N sao cho AM=MN=NC
chứng minh tứ giác BMDN là hình bình hành
BC cắt DN tại K chứng minh N là trọng tâm của tam giác ABC
DC cắt BN tại I và AB cắt DM tại H chứng minh I,O,H thẳng hàng
Cho hình thoi ABCD cạnh a, góc A=60°. Gọi E ,F lần lượt là trung điểm của các cạnh AD và CD
1, tính s tam giác BEF
2, gọi M là hình chiếu của E trên AC. I và K lần lượt là giao điểm của AC và EF với BD. Tính tỉ số MC trên EF
cho hình bình hành ABCD gọi EF lần lược là trung điểm của AB và CD , AF cắt DE tại M và EC cắt BF tại N . Chứng minh các tứ giác sau đây là hình bình hành :
A) AEFD
B) EBCF
C) AECF
D)EBFD
E ) chứng minh M là chung điểm của AF và DE, N là chung diểm của EC và FB
Cho hình bình hành ABCD, hai đường chéo cắt nhau tại O. Gọi M là trung điểm của AB ; N là giao điểm của đường thẳng OM với cạnh DC
a/ cm N là trung điểm of DC
b/ đường thẳng AB cắt AN tại E, cắt CM tại F. Cm DE=EF=FB
Hình thang ABCD (AB//CD) có DC=2AB .Gọi M,N,P,Q là trung điểm của các cạnh AB, BC,CD,DA
1) c/m các tứ giác ABPQ, MNPQ là hình bình hành
2) Tìm điều kiện của hình thang ABCDđể MNPQ là hình thoi
3) Gọi E là giao đimể của BD và AP . C/m ba điểm Q,N,E thẳng hàng