Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Thùy

Cho hình bình hành ABCD tên các cạnh AB, BC, CD, DA lấy tương ứng các điểm E, F, G, H sao cho AE = CG; BF = DH. CMR:

a, EFGH là hình bình hành

b, Các đường thẳng AC; BD; EG; HF cắt nhau tại 1 điểm

Trần Văn Thành
8 tháng 10 2016 lúc 19:41

a) Ta có: AE = CG (giả thiết) mà AB = CD (cạnh đối của hình bình hành ABCD), suy ra BE = DG.
△BEF và △DGH có:
           BE = DG (chứng minh trên)
           B^=D^  (hai góc đối của hình bình hành ABCD)
do đó: △BEF = △DGH (c.g.c), suy ra EF = GH.
Chứng minh tương tự, ta có: EH = FG.
Tứ giác EFGH có các cạnh đối bằng nhau nên là hình bình hành.
b) Tứ giác ABCD là hình bình hành ...

Băng Dii~
8 tháng 10 2016 lúc 19:44

Cho hình bình hành ABCD tên các cạnh AB, BC, CD, DA lấy tương ứng các điểm E, F, G, H sao cho AE = CG; BF = DH. CMR:

a, EFGH là hình bình hành

b, Các đường thẳng AC; BD; EG; HF cắt nhau tại 1 điểm

a) Ta có: AE = CG (giả thiết) mà AB = CD (cạnh đối của hình bình hành ABCD), suy ra BE = DG.
△BEF và △DGH có:
           BE = DG (chứng minh trên)
           B^=D^  (hai góc đối của hình bình hành ABCD)
do đó: △BEF = △DGH (c.g.c), suy ra EF = GH.
Chứng minh tương tự, ta có: EH = FG.
Tứ giác EFGH có các cạnh đối bằng nhau nên là hình bình hành.
b) Tứ giác ABCD là hình bình hành ...

đúng không


Các câu hỏi tương tự
Nguyễn Hoàng Châu
Xem chi tiết
Pham Trong Bach
Xem chi tiết
BM Nghe
Xem chi tiết
Phạm Minh Đức
Xem chi tiết
Nguyễn Thị Thùy
Xem chi tiết
Linh Nguyễn
Xem chi tiết
29.Trịnh Ánh Ngọc 8a16
Xem chi tiết
Lương Châu Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết