hình vẽ hơi xấu mong bạn thông cảm
do BK// AD nên \(\frac{EK}{AE}\)= \(\frac{BE}{ED}\) (1)
do AB// DG nên \(\frac{AE}{EG}\)= \(\frac{BE}{ED}\) (2)
từ (1) và (2) => \(\frac{EK}{AE}\)= \(\frac{AE}{EG}\)
=> \(EK.EG=AE^2\)
nên \(EK.EG\) là không đổi
hình vẽ hơi xấu mong bạn thông cảm
do BK// AD nên \(\frac{EK}{AE}\)= \(\frac{BE}{ED}\) (1)
do AB// DG nên \(\frac{AE}{EG}\)= \(\frac{BE}{ED}\) (2)
từ (1) và (2) => \(\frac{EK}{AE}\)= \(\frac{AE}{EG}\)
=> \(EK.EG=AE^2\)
nên \(EK.EG\) là không đổi
Cho hình bình hành ABCD. Qua A kẻ đường thẳng bất lì cắt BD,BC,CD lần lượt tại E,K,G.CMR:
a) \(AE^2=EK.EG\)
b) \(\frac{1}{AE}=\frac{1}{AK}+\frac{1}{AG}\)
c) Khi đường thẳng qua A thay đổi thì tích BC.DG k đổi.
Cho hình bình hành ABCD. Đường thẳng qua A cắt tia CD, tia CB và cắt đường thẳng BD lần lượt tại G,K và E (G,K và E nằm ngoài các đoạn thẳng CD, CB và BD). Chứng minh EA^2= EK.EG
cho hình bình hành ABCD có đường thẳng a đi qua A lần lượt cắt BD,BC,DC tại E,K,G.CMR:
a)AE\(^2\)=EK.EG
b)\(\frac{1}{AE}=\frac{1}{AK}+\frac{1}{AG}\)
c)Khi A thay đổi vị trí nhưng vẫn đi qua A thì BKxDG không đổi
cho hình bình hành ABCD đường thẳng a đi qua A lần lượt cắt BD,BC,DC tại E,K,G. CMR:
a)AE2=EK.EG
b)1/AE=1/AK+1/AG
c)khi đường thẳng a thay đổi nhưng vẫn đi qua A thì tích BK.DG ko đổi ?
Cho hình bình hành ABCD, đường thẳng a đi qua A lần lượt cắt BD, BC, DC theo thứ tự tại E, K, G . Chứng minh rằng
a) AE2 = EK.EG
b) \(\dfrac{AE}{AK}+\dfrac{AE}{AG}=1\)
Cho hình bình hành ABCD, một đường thẳng đi qua đỉnh A của hình bình hành cắt BD,BC,DC theo thứ tự ở E,K,G.CMR:
a)AE^2=EK*EG
b)1/AE=1/AK+1/AG
c) khi đường thẳng thay đổi vị trí nhưng vẫn đi qua A thì tích BK*DG có giá trị không đối
Cho ABCD là hình thang có đáy lớn CD. Qua A kẻ đường thẳng song song BC cắt BD tại M cắt CD tại I. Qua B kẻ đường thẳng song song AD cắt CD ở K. Qua K kẻ đường thẳng song song BD cắt BC ở Q.
a,C/m ABCI là hình bình hành
b, C/m AB=DK
c, C/m DI=CK
d, C/m MQ//DC
Cho hình bình hành ABCD O là giao điểm 2 đường chéo ac và bd. Qua o vẽ đường thẳng a cắt ad và bc tại e và f đường thẳng b cắt ab và cd tại k và h . CMR ekfh là hình bình hành