Do E,O, F thẳng hàng mà B, O,D cũng thẳng hàng nên E O D ^ = F O B ^
(2 góc đổi đỉnh) Þ DDOE = DBOF (g-c-g) Þ OE = OF.
Vậy E đối xứng với F qua O
Do E,O, F thẳng hàng mà B, O,D cũng thẳng hàng nên E O D ^ = F O B ^
(2 góc đổi đỉnh) Þ DDOE = DBOF (g-c-g) Þ OE = OF.
Vậy E đối xứng với F qua O
Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt các cạnh đối AD, BC ở E, F. Chứng minh E và F đối xứng với nhau qua điểm O.
Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt các cạnh đối AD, BC ở E, F. Chứng minh E và F đối xứng với nhau qua điểm O.
Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Qua O vẽ đường thẳng cắt hai cạnh AB, CD ở E, F. Qua O vẽ đường thẳng cắt hai cạnh AD, BC ở G, H. Chứng minh rằng EGFH là hình bình hành.
cho hình bình hành ABCD , O là giao điểm của hai đường chéo. Qua O vẽ đường thẳng cắt hai canh AB , CD ở E ,F . Qua O vẽ đường thẳng cắt hai cạnh AD , BC ở G,H . Chứng minh rằng EGFH là hình bình hành
Cho hình bình hành ABCD. Gọi O là giao điểm hai đường chéo AC và BD. Qua điểm O, vẽ đường thẳng a cắt hai đường thẳng AD, BC lần lượt tại E, F. Qua O vẽ đưòng thẳng b cắt hai cạnh AB, CD lần lượt tại K, H. Chứng minh tứ giác EKFH là hình bình hành
Cho hình bài hành ABCD , O là giao điểm hai đường chéo. Qua O vẽ đường thẳng cắt hai cạnh AB và CD tại E và F . Qua O vẽ hai đường thẳng cắt hai cạnh AD và BC ở G và H . Chứng minh rằng EGFH là hình bình hành
Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của AD và BC. a) CM: tứ giác BEDF là hình bình hành. b) Gọi AC cắt BD tại O. Chứng minh E đối xứng cới F qua O c) Đường chéo AC cắt các đoạn thẳng BE và DF theo thứ tự tại P và Q. CMR: AP = PQ = QC. d) Gọi R là trung điểm của BP. Chứng minh tứ giác ARQE là hình bình hành. e) Tìm điều kiện của ABCD để DERQ là hình chữ nhật.
Giúp mik với, mik đang cần gấp HELP ME!( chỉ cần làm câu e thôi nhé )
Cho hình bình hành ABCD, O là giao điểm của 2 đường chéo. Trên AB lấy E, trên CD lấy F sao cho AE = CF
a) Chứng minh F là điểm đối xứng với E qua O
b) Từ E dựng Ex // AC cắt BC tại I, dựng Fy // AC cắt AD tại K. Chứng minh I và K đối xứng nhau qua O
Cho hình bình hành ABCD. Gọi O là giao điểm của hai đường chéo AC và BD. Trên AB lấy điểm E, trên CD lấy điểm F sao cho AE = CF.
a) Chứng minh: tam giác AEO = tam giác CFO
b) Chứng minh: E và F đối xứng nhau qua O.
c) Từ E vẽ Ex // AC cắt BC tại I, vẽ Fy // AC cắt AD tại K.
Chứng minh rằng: Tứ giác KEIF là hình bình hành.