hình bình hành ABCD có cạnh AB=4, hai đường chéo AC=6 và BD=8. Tính độ dài cạnh AD
Trong mặt phẳng Oxy, cho tam giác ABC cân tại A, đường thẳng AC có phương trình : 4x-3y+8=0 . Gọi H là trung điểm của BC, D là hình chiếu của H trên cạnh AC, I là trung điểm của HD, đường thẳng BD đi qua M(9,-12), đường thẳng AI có phương trình : 13x-16y+51=0. Viết phương trình đường thẳng BC
Cho hình thang cân ABCD có AB // CD , AD = AB = BC. (K) là đường tròn đi qua A, B và tiếp xúc với AD, BC. P là điểm thuộc (K) và nằm trong hình thang . PA, PB lần lượt cắt CD tại E, F. BE, AF theo thứ tự cắt AD, BC ở M, N. Chứng minh rằng PM = PN.
1, Cho tam giác ABC có G là trọng tâm, biết rằng vecto AG= x vecto AB + y vecto AC (x;y ∈ R). tính T=x+y.
2, cho tam giác ABC đều cạnh a, H là trung điểm của BC. Tính |vecto CA - vecto HC|.
3, Cho tập hợp A= x ∈ R; x=3k, k ∈ Z, 10<x<100. Tổng các phần tử của tập hợp A bằng bao nhiêu?
Cho tam giác ABC (AB<AC) nội tiếp (O), M là trung điểm BC. Các điểm N, P thuộc đoạn BC sao cho MN=MP. Các đường thẳng AM, AN, AP cắt (O) lần lượt tại D, E, F. Chứng minh rằng BC, EF và tiếp tuyến của (O) tại D đồng quy.
Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD trên đoạn AC lấy M sao cho AC=4AM và N là trung điểm cạnh CD
CMR: Tam giác BMN là tam giác vuông cân
1. Giải hệ \(\left\{{}\begin{matrix}y^3-x^3+3x^2=6y^2-16y+7x+11\\\left(y+2\right)\sqrt{x+4}+\left(x+9\right)\sqrt{2y-x+9}=x^2+9y+1\end{matrix}\right.\)
2. Cho tam giác ABC nội tiếp (C) có tâm O. Gọi I là trung điểm AC và M là điểm thỏa mãn \(\overrightarrow{OM}=2\overrightarrow{OA}+\overrightarrow{OB}+2\overrightarrow{OC}\). Biết OM vuông góc với BI và \(AC^2=3BC.BA\). Tính góc ABC
Cho tam giác ABC thỏa mãn \(1+\cos A.\cos B.\cos C=9.\sin\frac{A}{2}.\sin\frac{B}{2}.\sin\frac{C}{2}\)
CMR ABC là tam giác đều
Cho tam giác ABC thỏa mãn 1 + cosA.cosB.cosC = 9.sin\(\frac{A}{2}\).sin\(\frac{B}{2}\).sin\(\frac{C}{2}\)
CMR ABC là tam giác đều