Cho hình bình hành ABCD (AB > AD). Vẽ AE, CF vuông góc BD. AE kéo dài cắt CD tại H và CF kéo dài cắt AB tại K. Chứng minh rằng:
a) Tứ giác AECF là hình bình hành
b) AC, BD, HK đồng quy
Cho hình bình hành ABCD, kẻ AE và CF vuông góc với BD.
a) Tứ giác AECF là hình gì? Vì sao?
b) AE cắt CD tại I, CF cắt AB tại K. Chứng minh trung điểm O của IK thuộc đường chéo BD.
c) Vẽ BM và DN vuông góc AC. Chứng minh EMFN là hình bình hành.
d) Các phân giác AG và BH của tam giác AOB cắt nhau tại P. Các phân giác DY, Cl của tam giác DOC cắt nhau tại Q. Chứng minh O là trung điểm PQ.
B1:Cho hình bình hành ABCD có O là giao điểm của 2 đường chéo AC và BD. TRên đường chéo AC lấy 2 điểm E và F sao cho AE=EF=CF
a,C/m tứ giác BEDF là hình bình hành
b,Gọi M là giao điểm của DF và CD. C/m FM=1/2FD
c, BF cắt DC tại I, DE cắt AB tại K. C/m I,D,K thằng
B2;Cho hình bình hành ABCD. Gọi P,Q lần lượt là trung điểm của AB và CD
a,Tứ giác APCQ là hình gì ? Vsao?
b,Gọi giao điểm của AC với DP và BQ theo thứ tự là E và F.C/m AE=EF=BF
c,C/m 3 đường thẳng AC,PQ,BD đồng quy.
d,Gọi I là trung điểm của È.C/m P,I,Q thẳng hàng
Giúp nhé Cảm ơn ạ
Bài 1: Cho hình bình hành ABCD có BD = 8cm, O là giao điểm của hai đường chéo. E, M thuộc cạnh CD sao cho: DE = EM = MC, AE cắt BD tại K, OM cắt AB tại F. CMR:
a) AF = 1/3 AB
b) Tính DK
Bài 2: Cho hình bình hành ABCD. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia BC lấy điểm F sao cho CD = CF. CMR: các đoạn thẳng AC, ED và BF đồng quy.
Cho hình bình hành ABCD. Từ A và C kẻ AE và CF vuông góc với DB.
a) C/m AECF là hình bình hành.
b) Gọi O là trung điểm của EF, C/m A,C,O thẳng hàng.
c) Gọi M là giao điểm của AE và CD, N là giao điểm của CF và AB. C/m AC,BD,MN đồng quy.
1)Cho Hình bình hành ABCD. Trên đường chéo BD lấy 2 điểm E và F sao cho DE = BF
a, C/m AECF là hình bình hành .
b, Gọi M,N ; lần lượt là giao điểm của AE, CF với DC và AB. C/m AC, BD, MN đồng quy (cắt nhau tại 1 điểm)
cho hình bình hành ABBCD ( AB > CD ) . VẼ AE vuông góc BD , CF vuông góc BD . kéo dài AE cắt CD tại H và CF cắt AB tại K . CM :
a, ABCF là hình bình hành
b , AC, BD , HK đồng quy
Cho hình bình hành ABCD. Kẻ AE,CF vuông góc với đường chéo BD, O là giao điểm của AC và BD. AE cắt CD ở I, CF cắt AB tại K.
a, CM tam giác AEO bằng tam giác CFO
b, CM tứ giác AECF là hình bình hành
c, CM AI=CK
d, CM DE=BF
các bạn lằm ơn giúp mình trước thứ 2 nhé thanks trước
1) Cho hình thang ABCD( AB > AD). Hai đường chéo AC và BD cắt nhau tại O. Một đường thẳng tùy ý qua O cắt AB, CD theo thứ tự M,N
a) CMR: OM = ON
b) CMR: DMBN là hình gì ? Vì sao ?
c) CMR: AN// CM
2) Cho tứ giác ABCD có M,N,P,Q lần lượt là trung điểm của AB,BC,CA,AD.
a) CMR: tứ giác MNPQ là hình bình hành
b) Gọi M trung điểm DB. biết AD=6, AB=8. Cho AM= 1/2 DB. Tính QM ?
3) Cho Hình bình hành ABCD( AB>AD) . Kẻ AE, CF lần lượt vuông góc vs BD tại E,F.
a) CMR: AEDF là hình bình hành
b) AE kéo dài cắt CD tại K, CF kéo dài cắt AB tại H. Chứng tỏ rằng AC, BD,HK đồng quy.