a: ΔDAC vuông tại A
mà AN là đường trung tuyến
nên AN=ND=NC
Xét tứ giác AMCN có
AM//CN
AM=CN
AN=NC
DO đó: AMCN là hình thoi
b: Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
c: MN=6cm nên AD=6cm
=>DC=10cm
=>AN=5cm
a: ΔDAC vuông tại A
mà AN là đường trung tuyến
nên AN=ND=NC
Xét tứ giác AMCN có
AM//CN
AM=CN
AN=NC
DO đó: AMCN là hình thoi
b: Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
c: MN=6cm nên AD=6cm
=>DC=10cm
=>AN=5cm
1. cho hình bình hành ABCD, M và N lần lượt là trung điểm của AB và CD. Chứng minh các tứ giác AMCN và MBND là hình bình hành
2.Cho tam giác ABC có AB=3cm, AC=5cm. Các điểm M,N,P lần lượt là trung điểm của AB,AC và BC
a, Chứng minh tứ giác BMNP là hình bình hành
b,Tính chu vi của tứ giác BMNP nếu góc B=90 độ
Cho hình bình hành ABCD có AB = 8 cm,AD = 4 cm.Gọi M, N lần lượt là trung điểm của AB và CD.a/ Chứng minh tứ giác AMCN là hình bình hành. Hỏi tứ giác AMND là hình gì?
b. Gọi I là giao điểm của AN và DM , K là giao điểm của BN và CM . Tứ giác MINK là hình gì
c/ Chứng minh IK\\CD
d/ (Lớp 8A làm thêm câu này).Hình bình hành ABCD cần thêm điều kiện gì thì tứ giác MINK là hình vuông? Khi đó ,diện tích của MINK bằng bao nhiêu?
Bài 5: Cho hình bình hành ABCD, AD = 4cm, AB = 2AD. M,N lần lượt là trung điểm của AB và CD. Chứng minh rằng
a) Tứ giác AMND là hình thoi
b) góc ABN bằng 90 độ
c) Tứ giác ANCB là hình thoi
d) Biết . Tính độ dài BN( làm tròn đến chữ số thập phân thứ nhất),
Cho tam giác ABC cân tại A có BC = 6cm. Gọi M,N,P lần lượt là trung điểm của AB, AC, BC
a) Tính độ dài MN? Chứng minh MBNC là hình thang cân
b) Gọi K là điểm đối xứng của B qua N. Chứng minh tứ giác ABCK là hình bình hành
c) Gọi H là điểm đối xứng của P qua M. Chứng minh AHBP là hình chữ nhật
d) Chứng minh AMPN là hình thoi
Giúp mình câu d ạ
Cho tam giác ABC cân tại A có BC = 6cm. Gọi M,N,P lần lượt là trung điểm của AB, AC, BC
a) Tính độ dài MN? Chứng minh MBNC là hình thang cân
b) Gọi K là điểm đối xứng của B qua N. Chứng minh tứ giác ABCK là hình bình hành
c) Gọi H là điểm đối xứng của P qua M. Chứng minh AHBP là hình chữ nhật
d) Chứng minh AMPN là hình thoi
a. MN = ?
Trong ΔABC có:
M là trung điểm AB (gt)
N là trung điểm AC (gt)
⇒ MN là đường trung bình ΔABC
⇒ MN = 1/2BC (t/c)
Mà BC = 6cm (gt)
⇒ MN=BC/2=6/2=3(cm)
C/m: BMNC là hình thang cân
Có MN là đường trung bình ΔABC
⇒ MN//BC
⇒ BMNC là hình thang
Mà góc ABC = góc ACB (ΔABC cân tại A)
⇒ BMNC là hình thang cân (DHNB)
b. C/m: ABCK là hình bình hành
Xét tứ giác ABCK có:
N là trung điểm AC (gt)
N là trung điểm BK (K đ/x với B qua M)
⇒ ABCK là hình bình hành (DHNB)
c. C/m: AHBP là hình chữ nhật
Xét tứ giác AHBP có:
M là trung điểm AB (gt)
M là trung điểm PH ( H đ/x với P qua M)
⇒ AHBP là hình bình hành (DHNB)
Có ΔABC cân tại A
⇒ AP là trung tuyến đồng thời là đg cao
⇒ góc APB = 90 độ
⇒ AHBP là hình chữ nhật (DHNB)
d) Chứng minh AMPN là hình thoi
Tính giúp mình câu d nha!!!
Cho tam giác ABC cân tại A có BC = 6cm. Gọi M,N,P lần lượt là trung điểm của AB, AC, BC
a) Tính độ dài MN? Chứng minh MBNC là hình thang cân
b) Gọi K là điểm đối xứng của B qua N. Chứng minh tứ giác ABCK là hình bình hành
c) Gọi H là điểm đối xứng của P qua M. Chứng minh AHBP là hình chữ nhật
d) Chứng minh AMPN là hình thoi
Cho hình bình hành ABCD có AB=2.BC. Gọi E, F lần lượt là trung điểm của AB, CD
a) Chứng minh tứ giác DEBF là hình bình hành; tứ giác AEFD là hình thoi
b) Cho DE cắt AF tại M, CE cắt BF tại N. C/m EF, MN, AC đồng quy
c) Tìm điều kiện của tứ giác ABCD để EMFN là hình vuông
d) Cho S ABCD=S . Tính S EMFN theo S
Cho hình bình hành ABCD có AB=2.BC. Gọi E, F lần lượt là trung điểm của AB, CD
a) Chứng minh tứ giác DEBF là hình bình hành; tứ giác AEFD là hình thoi
b) Cho DE cắt AF tại M, CE cắt BF tại N. C/m EF, MN, AC đồng quy
c) Tìm điều kiện của tứ giác ABCD để EMFN là hình vuông
d) Cho S ABCD=S . Tính S EMFN theo S
Cho tam giác ABC có M, N lần lượt là trung điểm của AB , AC . Cho BC = 6cm
a ) Chứng minh tứ giác BMNC là hình thang
b) Tính độ dài MN
c) Gọi E là trung điểm của BC . Chứng minh tứ giác MNCE là hình bình hành
d) gọi D là điểm đối xứng của M qua N . Chứng minh tứ giác BMDC là hình bình hành . Gọi O là giao điểm của DB và MC . Chứng minh E , O , N thẳng hàng
cho hình bình hành ABCD có AB=2 .Gọi M,N lần lượt là trung điểm của AB và CD.
a)chứng minh tứ giác BMND là hình bình hành