Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hình bình hành ABCD có AB=2AD. Gọi E và F theo thứ tự là trung điểm của AB và CD. Gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.

Cao Minh Tâm
12 tháng 12 2018 lúc 5:53

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tứ giác AEFD là hình thoi

⇒ AF ⊥ ED ⇒  ∠ (EMF) = 90 0

AF // CE (vì tứ giác AECF là hình bình hành)

Suy ra: CE ⊥ ED ⇒  ∠ (MEN) =  90 0

Xét tứ giác EBFD, ta có: EB = FD (vì cùng bằng AE)

EB // FD (vì AB // CD)

Tứ giác EBFD là hình bình hành (vì có một cặp cạnh đổi song song và bằng nhau) ⇒ DE // BF

Suy ra: BF ⊥ AF ⇒ ∠ (MFN) = 90 0

Vậy tứ giác EMFN là hình chữ nhật.


Các câu hỏi tương tự
nguyễn quỳnh như
Xem chi tiết
Nhok Kòi
Xem chi tiết
Phương Nguyễn Ngọc Mai
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nhạt
Xem chi tiết
hoàng thị hồng thảo
Xem chi tiết
Nguyễn Thị Lan Hương
Xem chi tiết
Tin Nguyễn Thị
Xem chi tiết
Nguyễn Lan Anh
Xem chi tiết