a) Chứng minh tương tự 1A.
Ta có:
AABE = SCDF và SBCF = SDAE
b) Sử dụng kết quả ký a và SAEF = SCFE
a) Chứng minh tương tự 1A.
Ta có:
AABE = SCDF và SBCF = SDAE
b) Sử dụng kết quả ký a và SAEF = SCFE
Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của AD và BC. a) CM: tứ giác BEDF là hình bình hành. b) Gọi AC cắt BD tại O. Chứng minh E đối xứng cới F qua O c) Đường chéo AC cắt các đoạn thẳng BE và DF theo thứ tự tại P và Q. CMR: AP = PQ = QC. d) Gọi R là trung điểm của BP. Chứng minh tứ giác ARQE là hình bình hành. e) Tìm điều kiện của ABCD để DERQ là hình chữ nhật.
Giúp mik với, mik đang cần gấp HELP ME!( chỉ cần làm câu e thôi nhé )
Cho hình bình hành ABCD. Đường phân giác của các góc A và C cắt đường chéo BD tại E và F
A. S A B C F E = 2 S A D C F E
B. S A B C F E < S A D C F E
C. S A B C F E = S A D C F E
D. S A B C F E > S A D C F E
Cho hình bình hành ABCD. Đường phân giác của các góc A và C cắt đường chéo BD tại E, F. Chứng minh hai hình ABCFE và ADCFE có cùng diện tích.
Cho hình bình hành ABCD, các đường chéo cắt nhau tại O. Gọi E,F,G,H theo thứ tự là giao điểm của các đường phân giác của tam giác AOB, BOC, COD, DOA. Chứng minh rằng EFGH là hình thoi.
Cho hình bình hành ABCD. Đường phân giác của các góc A và C cắt đường chéo BD tại E, F. Các hình đó có phải là đa giác lồi không? Vì sao?
1 ) Cho tam giác ABC . Phân giác góc A cắt cạnh BC tại d . Qua d vẻ đường thẳng song song với AB , đường này cắt AC tại E . Đường thẳng qua E // BC cắt AB tại F
- Chứng minh : AE = BF
2) Cho hình bình hành ABCD . Gọi MNPQ theo thứ tự là trung điểm của cạnh AB , BC , CD , DA đường thẳng AN cắt DM , BP theo thứ tự tại E và F . Đường thẳng CQ cắt BP , DM theo thứ tự G , H
A) chứng minh : tứ giác EFGH là hình bình hành
B ) chứng minh : các đường thẳng AC , BD , EG, FH đồng quy tại một điểm
Cho hình bình hành ABCD,, phân giác góc A cắt đường chéo BD tại E và phân giác góc B cắt đường chéo AC tại F. Chứng minh rằng EF // AB.
Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?
Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :
a) MENF là hình bình hành.
b) Các đường thẳng AC, BD, MN, EF đồng quy.
Bài 3: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.
a) Tứ giác DEBF là hình gì? Vì sao?
b) C/m 3 đường thẳng AC, BD, EF đồng qui.
c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.
Bài 4: Cho (ABC. Gọi M,N lần lượt là trung điểm của BC,AC. Gọi H là điểm đối xứng của N qua M.Chứng minh tứ giác BNCH và ABHN là hình bình hành.
Bài 5: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.
a) Tứ giác DEBF là hình gì? Vì sao?
b) C/m 3 đường thẳng AC, BD, EF đồng qui.
c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.
Bài 6 : Cho tứ giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với5; 8; 13 và 10.
a/ Tính số đo các góc của tứ giác ABCD
b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắt nhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giác của góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm của đoạn MN.
Bài 7: Cho hình thang ABCD ( AB//CD).
a/ Chứng minh rằng nếu hai tia phân giác của hai góc A và D cùng đi qua trung điểm F của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy.
b/ Chứng minh rằng nếu AD = AB + CD thì hai tia phân giác của hai góc A và D cắt nhau tại trung điểm của cạnh bên BC.