Xét tam giác Abe và cdf ta có
Góc aeb = dfc (=90)
Ab=cb (2 cạnh đối hbh)
A1=c1 (sole trong)
Tam giác abe =cdf
Xét tam giác Abe và cdf ta có
Góc aeb = dfc (=90)
Ab=cb (2 cạnh đối hbh)
A1=c1 (sole trong)
Tam giác abe =cdf
cho hình bình hành ABCD, có đường chéo AC>BD cắt nhau tại O,kẻ BE vuông góc với AC,DF vuông góc với AC,
a chứng minh tứ giác BEDF là hình bình hành
b gọi H,K lần lượt là hình chiếu của C trên các đường thằng AB,CD.CHúng minh rằng CH.CD=CB.CK
c chứng minh AB.AH+AD.AK=AC2
Cho hình bình hành ABCD có AC > BD. Gọi H, K lần lượt là hình chiếu vuông góc của C trên đường thẳng AB và AD. Cmr
CH/CB=CK/CD
Tam giác CHK đồng dạng tam giác BCA
AB.AH + AD.AK= AC x AC
cho hình bình hành ABCD có AC>BD . Gọi H, K lần lượt là hình chiếu vuông góc của C trên đường thẳng AB và CD . CM
a, CH.CD=CK.CB
b, tam giác CHK đồng dạng với tam giác BCA
c, AB.AH+AD.AK=AC2
cho hình bình hành ABCD có AC>BD, gọi H và K lần lượt là hình chiếu vuông góc của C trên AB, AD. chúng minh:
a, CH/CB = CK/CD
b, tam giác CHK đồng dạng BCA
c, AB.AH + AD.AK = AC2
Cho hình bình hành ABCD (AC>BD). Gọi E,F lần lượt là hình chiếu của B, D trên AC, gọi H, K lần lượt là hình chiếu của C trên AB và AD. Chứng minh tam giác CHK đồng dạng với tam giác BCA
Cho tam giác ABC vuông tại A, AB < AC. Gọi D, E, F lần lượt là trung điểm của các cạnh AB, AC, BC.
1. Chứng minh : Tứ giác FDEC là hình bình hành
2. Chứng minh : AF = DE
3. Gọi K là hình chiếu của điểm A trên cạnh BC, chứng minh tứ giác KDEF là hình thang cân.
3) cho tam giác ABC vuông tại A , AB<AC , đường cao AH . Trên 1 nữa mặt phẳng bờ BC có chứa A vẽ hình vuông AHKD, K và C nằm cùng phía đối với AH . KD cắt AC ở E. CM H,I,D thằng hàng
a)tam giác ABE là tam giác gì ? Why. Vẽ hình bình hành BAEF . À cắt BE ở I . Cm AKF=90 độ
1) Cho hình thang vuông ABCD(AB//CD,A=90• )có AB =1/2CD . H là hình chieus của D trên AC , M là trung điểm HC. Chứng minh BMD=90 độ
2) cho tam giác ABC vuông tại A , phân giác AD . Họi E,F thứ tự là hình chiếu của D trên AB,AC. Cmr AEDF là hình vuông
4) cho tam giác ABC . Lấy D,E lần lượt thuộc tia đối của BA,CA sak cho DB=BC=CE. Gọi O là giao điểm BE,CD . Qua O vẽ đường thẳng ss vs tia phân giác góc BAC , cắt AC ở K . CMR AB=CK
Ko dùng tam giác đồng dạng hãy giải bài toán sau :
Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD.
a)Tứ giác BEDF là hình gì ?
b)Chứng minh rằng : CH.CD = CB.CK
c)Chứng minh rằng : AB.AH + AD.AK = AC2
[Các bạn chỉ cần làm ý c thôi nhé]
bài 1:Cho hình thang ABCD (AB//CD).Gọi M,N,P,Q theo thứ tự là trung điểm của AB,AC,CD,BD.
a) Chứng minh rằng MNPQ là hình bình hành?
b)Nếu ABCD là hình thang cân thì tứ giác MNPQ là hifh gì?Vì sao?
Bài 2:Cho hình bình hành ABCD.Gọi E là trung điểm của AD,F là trung điểm của BC.Chứng min rằng:
a) tam giác ABE= tam giác CDF
b) Tứ giác DEBF là hình bình hành
c) Các đường thẳng EF,DB và AC đồng quy.