Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
vinh chu

Cho tam giác ABC vuông tại A, AB < AC. Gọi D, E, F lần lượt là trung điểm của các cạnh AB, AC, BC.

1. Chứng minh : Tứ giác FDEC là hình bình hành

2. Chứng minh : AF = DE

3. Gọi K là hình chiếu của điểm A trên cạnh BC, chứng minh tứ giác KDEF là hình thang cân.  

Thanh Hoàng Thanh
9 tháng 2 2022 lúc 21:03

undefined

Ami Mizuno
9 tháng 2 2022 lúc 21:19

a. Xét \(\Delta ABC\) có: \(\left\{{}\begin{matrix}CF=BF\\BD=AD\end{matrix}\right.\)\(\Rightarrow\)DF là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)DF//AC hay DF//EC(1)

Lại có, xét \(\Delta ABC\)\(\left\{{}\begin{matrix}CE=AE\\BD=AD\end{matrix}\right.\)\(\Rightarrow\) ED là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\) ED//BC hay ED//CF(2)

Từ (1) và (2) suy ra tứ giác FDEC là hình bình hành

b. Ta có: \(\left\{{}\begin{matrix}FD//AC\\AC\perp AB\end{matrix}\right.\) \(\Rightarrow FD\perp AB\Rightarrow\widehat{FDA}=90^o\)

Tương tự xét \(\Delta ABC\) có: \(\left\{{}\begin{matrix}CE=AE\\CF=BF\end{matrix}\right.\)\(\Rightarrow\)EF là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\) EF//AB

Có: \(\left\{{}\begin{matrix}EF//AB\\AC\perp AB\end{matrix}\right.\)\(\Rightarrow EF\perp AC\Rightarrow\widehat{FEA}=90^o\)

Xét tứ giác EFDA có: \(\widehat{FEA}=\widehat{EFD}=\widehat{EAD}=90^o\)

\(\Rightarrow\) Tứ giác EFDA là hình chữ nhật \(\Rightarrow\) AF=DE

c. Xét \(\Delta AKC\) vuông tại K có KE là đường trung tuyến ứng với cạnh huyền

\(\Rightarrow EK=\dfrac{AC}{2}=CE=EA\)

Mà EA=DF (EDFA là hình chữ nhật)

\(\Rightarrow EK=DF\)

Xét tứ giác KDEF có: \(\left\{{}\begin{matrix}DK//EF\\DF=EK\end{matrix}\right.\)\(\Rightarrow\) Tứ giác KDEF là hình thang cân


Các câu hỏi tương tự
45.Trương Thảo Vy
Xem chi tiết
Chan Moon
Xem chi tiết
Minh Uyen Nguyen
Xem chi tiết
Linh Dan Nguyen
Xem chi tiết
Linh Dan Nguyen
Xem chi tiết
Nguyễn Hoàng Phúc
Xem chi tiết
Lan Lê ngọc
Xem chi tiết
Nguyễn Thuỳ Linh
Xem chi tiết
H Sam ê Ban
Xem chi tiết