c: Sửa đề: NB*FA=AD*FN
Xét ΔFAD và ΔFNB có
góc FAD=góc FNB
góc AFD=góc NFB
=>ΔFAD đồng dạng vơi ΔFNB
=>FA/FN=AD/NB
=>FA*NB=FN*AD
a: Sửa đề: AB=6cm; AD=9cm
Xét ΔABD có AFlà phân giác
nên BF/AB=DF/AD
=>DF/9=4,8/6=4/5
=>DF=7,2cm
c: Sửa đề: NB*FA=AD*FN
Xét ΔFAD và ΔFNB có
góc FAD=góc FNB
góc AFD=góc NFB
=>ΔFAD đồng dạng vơi ΔFNB
=>FA/FN=AD/NB
=>FA*NB=FN*AD
a: Sửa đề: AB=6cm; AD=9cm
Xét ΔABD có AFlà phân giác
nên BF/AB=DF/AD
=>DF/9=4,8/6=4/5
=>DF=7,2cm
Cho hình bình hành ABCD (AB > AD), phân giác góc A cắt cạnh CD tại M, phân giác góc C cắt cạnh AB tại N.
a) Chứng minh tứ giác AMCN là hình bình hành.
b) Gọi E là trung điểm AB, F là trung điểm CD, chứng minh rằng AC, MN, EF và BD đồng quy.
c) Đường chéo DB cắt AF, EC lần lượt tại I, K chứng minh DI = IK = KB.
Bài 1; Cho hình thang ABCD (AD//BC), phân giác góc A cắt BC tại E
a) Chứng minh rằng AB=BE
b)Phân giác góc B cắt AE tại F. Chứng minh BF vuông góc AE và FA=FE
c) Gọi M là trung điểm của AB và N là trung điểm của CD. Chứng minh M,F,N thẳng hàng
Bài 2; Cho hình thang ABCD (AB//CD) có AB+BC=CD . Chúng minh tia phân giác góc A và góc B cắt nhau tại 1 điểm nằm trên đáy CD
Bài 3 Cho hình thang ABCD (AB//CD) , tia phân giác góc A và góc B cắt nhau tại 1 điểm nằm trên đáy CD . Chứng minh AD+BC=CD
Bài 1: Cho hình bình hành ABCD có BD = 8cm, O là giao điểm của hai đường chéo. E, M thuộc cạnh CD sao cho: DE = EM = MC, AE cắt BD tại K, OM cắt AB tại F. CMR:
a) AF = 1/3 AB
b) Tính DK
Bài 2: Cho hình bình hành ABCD. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia BC lấy điểm F sao cho CD = CF. CMR: các đoạn thẳng AC, ED và BF đồng quy.
Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?
Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :
a) MENF là hình bình hành.
b) Các đường thẳng AC, BD, MN, EF đồng quy.
Bài 3: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.
a) Tứ giác DEBF là hình gì? Vì sao?
b) C/m 3 đường thẳng AC, BD, EF đồng qui.
c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.
Bài 4: Cho (ABC. Gọi M,N lần lượt là trung điểm của BC,AC. Gọi H là điểm đối xứng của N qua M.Chứng minh tứ giác BNCH và ABHN là hình bình hành.
Bài 5: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.
a) Tứ giác DEBF là hình gì? Vì sao?
b) C/m 3 đường thẳng AC, BD, EF đồng qui.
c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.
Bài 6 : Cho tứ giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với5; 8; 13 và 10.
a/ Tính số đo các góc của tứ giác ABCD
b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắt nhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giác của góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm của đoạn MN.
Bài 7: Cho hình thang ABCD ( AB//CD).
a/ Chứng minh rằng nếu hai tia phân giác của hai góc A và D cùng đi qua trung điểm F của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy.
b/ Chứng minh rằng nếu AD = AB + CD thì hai tia phân giác của hai góc A và D cắt nhau tại trung điểm của cạnh bên BC.
Cho hình thang ABCD (AB//CD). Tia phân giác của góc A cắt cạnh BC tại E.
a) Chứng minh AB = AE.
b) Tia phân giác góc B cắt AE tại F. Chứng minh BF vuông góc với AE và FA=FE.
c) Gọi M, N lần lượt là trung điểm của AB và CD. Chứng minh ba điểm M, F, N thẳng hàng.
Cho hình thang ABCD (AD//BC). Tia phân giác góc A cắt cạnh BC tại E a)Chứng minh: AB=BE b)Tia phân giác góc B cătd AE tại F. Chứng minh: BF vuông góc FE c)Gọi M là trung điểm của AB, N là trung điểm của CD. Chứng minh 3 điểm: M, F, N thẳng hàng Giúp mình với ạ, cảm ơn
Bài 1. Cho hình thang ABCD , O là giao điểm 2 đường chéo AC và BD . Chứng minh rằng : ABCD là hình thang cân nếu OA = OB
Bài 2 : Cho hình thang ABCD ( AB // CD ), AB < CD . Tia phân giác góc A và góc D cắt nhau tại E , tia phân giác góc B và góc C cắt nhau tại F.
a) Tính góc AED , góc BFC
b) Giả sử AE và BF cắt nhau tại M nằm trên cạnh CD . Chứng minh rằng AD + BC = DC
c) Với giả thiết như câu b) , Chứng minh EF nằm trên đường trung bình của hình thang ABCD
Mọi người vẽ hình hộ em nha!