Cho hình bình hành ABCD (AB > BC). Lấy điểm M tuỳ ý trên cạnh AB (M ≠ A , M ≠ B). Đường thẳng DM cắt AC tại K và cắt đường thẳng BC tại N. a) Chứng minh: NMB đồng dạng với NDC , AKD đồng dạng với CKN b) Chứng minh: KD2 = KM.KN c) Biết NB = 6 ; NC = 15 ; MB = 4 : Tìm tỉ số đồng dạng của : NMB và NDC , Tính diện tích của hình chữ nhật ABCD.
a. vì ABCD là hình bình hành => MB//CD
theo hệ quả của định lý Ta-lét, ta có: tam giác NMB ~ tam giác NDC
vì AD//CN (ABCD là hbh)
=> \(\dfrac{AK}{KC}\)= \(\dfrac{KD}{KN}\)
góc AKD = góc NKC (đối đỉnh)
=> tam giác AKD ~ tam giác CKN (c.g.c)