\(\left\{{}\begin{matrix}x+my=2m\\mx+y=1-m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=2m^2\\mx+y=1-m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)y=2m^2+m-1\\x+my=2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m^2+m-1}{m^2-1}\\x+my=2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\left(2m-1\right)\left(m+1\right)}{\left(m+1\right)\left(m-1\right)}\\x+my=2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m-1}\\x=2m-m\cdot\dfrac{2m-1}{m-1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m-1}\\x=\dfrac{2m\left(m-1\right)}{m-1}-\dfrac{2m^2-m}{m-1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m-1}\\x=\dfrac{2m^2-2m-2m^2+m}{m-1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m-1}\\x=\dfrac{-m}{m-1}\end{matrix}\right.\)
Để hpt có nghiệm nguyên thì: \(x,y\) nguyên
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2m-1}{m-1}\in Z\left(1\right)\\\dfrac{-m}{m-1}\in Z1\left(2\right)\end{matrix}\right.\)
Ta có: \(\left(1\right)=\dfrac{2m-2+1}{m-1}=2+\dfrac{1}{m-1}\)
\(\Rightarrow m-1\in\left\{1;-1\right\}\Rightarrow m\in\left\{2;0\right\}\) (*)
\(\left(2\right)=\dfrac{-m+1-1}{m-1}=\dfrac{-\left(m-1\right)-1}{m-1}=-1-\dfrac{1}{m-1}\)
\(\Rightarrow m-1\in\left\{1;-1\right\}\Rightarrow m\in\left\{2;0\right\}\) (**)
Từ (*) và (**) ⇒ \(m\in\left\{0;2\right\}\)