Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Le Xuan Mai

Cho hệ phương trình: 2mx-3y=2m-1

                                    4x-(m+5)y=2(m là tham số)

a.giải hệ phương trình với m =-1

b.tìm m để hệ phương trình có nghiệm duy nhất(xo:y0).tìm hệ thức liên hệ giữa xo:yo không phụ thuộc vào m

c. tìm m để hệ phương trình có nghiệm duy nhất (xo:yo) thảo mãn xo>0;yo>0

Nguyễn Lê Phước Thịnh
16 tháng 12 2023 lúc 14:35

a: Khi m=-1 thì hệ phương trình sẽ là:

\(\left\{{}\begin{matrix}x\cdot2\cdot\left(-1\right)-3y=2\cdot\left(-1\right)-1\\4x-\left(-1+5\right)y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2x-3y=-3\\4x-4y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-4x-6y=-6\\4x-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6y-4y=-6+2\\x-y=\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-10y=-4\\x-y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{5}\\x=\dfrac{1}{2}+\dfrac{2}{5}=\dfrac{9}{10}\end{matrix}\right.\)

b: Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{2m}{4}\ne-\dfrac{3}{-\left(m+5\right)}\)

=>\(\dfrac{m}{2}\ne\dfrac{3}{m+5}\)

=>\(m^2+5m\ne6\)

=>\(m^2+5m-6\ne0\)

=>\(\left(m+6\right)\left(m-1\right)\ne0\)

=>\(m\notin\left\{-6;1\right\}\)

c: \(\left\{{}\begin{matrix}2mx-3y=2m-1\\4x-\left(m+5\right)y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4mx-6y=4m-2\\4mx-\left(m^2+5m\right)y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-6y+\left(m^2+5m\right)y=2m-2\\4x-\left(m+5\right)y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(m^2+5m-6\right)=2m-2\\4x-\left(m+5\right)y=2\end{matrix}\right.\)(1)

Khi \(m\notin\left\{-6;1\right\}\) thì hệ phương trình (1) sẽ trở thành:

\(\left\{{}\begin{matrix}y=\dfrac{2m-2}{m^2+5m-6}=\dfrac{2\left(m-1\right)}{\left(m+6\right)\left(m-1\right)}=\dfrac{2}{m+6}\\4x=2+\left(m+5\right)y=2+\dfrac{2m+10}{m+6}=\dfrac{4m+22}{m+6}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{2}{m+6}\\x=\dfrac{4m+22}{4m+24}=\dfrac{2m+11}{2m+12}\end{matrix}\right.\)

Để hệ có nghiệm duy nhất thỏa mãn x>0 và y>0 thì \(\left\{{}\begin{matrix}m\notin\left\{-6;1\right\}\\\dfrac{2}{m+6}>0\\\dfrac{2m+11}{2m+12}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\notin\left\{-6;1\right\}\\m+6>0\\\dfrac{2m+11}{m+6}>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne1\\m>-6\\\left[{}\begin{matrix}\left\{{}\begin{matrix}2m+11>0\\m+6>0\end{matrix}\right.\\\left\{{}\begin{matrix}2m+11< 0\\m+6< 0\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m>-6\\\left[{}\begin{matrix}m>-\dfrac{11}{2}\\m< -6\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\)\(\left\{{}\begin{matrix}m\ne1\\m>-\dfrac{11}{2}\end{matrix}\right.\)


Các câu hỏi tương tự
Le Xuan Mai
Xem chi tiết
Khánh An
Xem chi tiết
Le Xuan Mai
Xem chi tiết
Le Xuan Mai
Xem chi tiết
Rin Rin cute
Xem chi tiết
Khổng Diệu Hà
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Vương Nhất Bác
Xem chi tiết
Pham Trong Bach
Xem chi tiết