Tam giác ABC vuông tại A qua C kẻ d vuông góc AC từ trung điểm M của AC kẻ ME vuông góc BC (E thuộc BC) , đg thẳng ME cắt (d) tại H , cắt AB tại K a CMR: tam giác AMK=∆CMH .Suy ra AKCH là hình bình hành b) gọi D là giao điểm của AH và BM .Chứng minh rằng BMCH nội tiếp.Xđ tâm o
cho hình chữ nhật ABCD , kẻ BH vuông góc với AC. M là trung điểm của AH, K là trung điểm của CD, N là trung điểm củ BH. chứng minh tgMBK = CN/BM
cho tam giác ABC vuông tại A, gọi D là trung điểm của cạnh BC.Lấy điểm M bất kì trên đoạn thẳng AD(M không trùng với A).Gọi N,P theo thứ tự là hình chiếu vuông góc của M xuống AB,AC và H la hình chiếu vuông góc của N xuống đường thẳng PD .
a) Chứng minh AH vuông góc với BH.
b) Đường thẳng qua B song song với AD cắt đường trung trực của AB tại I
chứng minh ba điểm H,N,I thẳng hàng
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là hình chiếu của H trên AB,AC. Biết AB=4cm, AC=6cm.
a) Chứng minh : AD.AB=AE.AC
b) Tính độ dài AE
c) Kẻ phân giác AI của góc BAC. Tính độ dài HI
d) Đường thẳng vuông góc với DE tại D cắt BC tại M. Chứng minh M là trung điểm của BH
Bài 2 : Cho tam giác ABC vuông ở A. Gỉa sử D là 1 điểm trên cạnh huyền BC và E.F lần lượt là hình chiếu của D lên các cạnh AB, AC. CMR : AE.EB + AF.FC=BD.DC
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Gọi M và N lần lượt là hình chiếu của H trên AB và AC.
Qua A kẻ đường thẳng vuông góc với MN cắt BC tại K . CM K là trung điểm của BC. (chỉ ý này thôi ạ)
--------------
(Các ý trước:
a) Giả sử HB = 3, 2 cm , HC = 7,2cm . Tính HA , AC và góc B ; góc C
b) Chứng minh: AM.AB = AN.AC và HB.HC = AM.MB + AN.NC
cho tam giác vuông ABC vuông ở A và đường cao AH. gọi D,E là hình chíu của H lên AB và AC. từ điểm D,E kẻ các đường thẳng vuông góc với DE cắt BH và CH tại M và N. biết BH=4cm,CH=9cm
a) tính DE
b) chứng minh AD.AB=AE.AC
c)chứng minh M là trung điểm của BH, N là trung điểm của CH
d) tính diện tích tứ giác DMNE
Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH, CH có độ dài lần lượt là 4cm, 9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Các đường thẳng vuông góc với DE tại D và tại E lần lượt cắt BC tại M và N. Chứng minh M là trung điểm của BH và N là trung điểm của CH
Từ một điểm A nằm ngoài đường tròn (O;R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường trong (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại 2 điểm M và N (M nằm giữa A và N). Chứng minh:
a) CD//OA
b) AC là tiếp tuyến của đường tròn (O)
c) Cho biết R = 15cm, BC = 24CM. Tính AB, OA
d) Gọi I là trung điểm của HN. Từ H kẻ đường vuông góc với BI cắt BM tại E. Chứng minh: M là trung điểm của BE.
Cho tam giác ABC vuông ở A, đường cao AH chia cạnh huyền BC thành 2 đoạn ; BH,CH có độ dài lần lượt là 4cm và 9cm . Gọi D và E lần lượt là hình chiếu của điểm H trên AB và AC .Tính a, DE
b, Cắt đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N . chứng minh M là trung điểm của BH, N là trung điểm của CH.
c, Tính diện tích tứ giác DEMN