a: BD=5cm
=>AO=BD/2=2,5cm
b: Xét ΔHAB có HN/HD=HM/HA
nên MN//AD và MN=AD/2
=>MN//BI và MN=BI
c: Xét tứ giác BMNI có
BI//MN
BI=MN
Do đó: BMNI là hình bình hành
Suy ra: BM//IN
a: BD=5cm
=>AO=BD/2=2,5cm
b: Xét ΔHAB có HN/HD=HM/HA
nên MN//AD và MN=AD/2
=>MN//BI và MN=BI
c: Xét tứ giác BMNI có
BI//MN
BI=MN
Do đó: BMNI là hình bình hành
Suy ra: BM//IN
Cho hình chữ nhật ABCD, kẻ AH vuông góc với BD. Gọi M, N, I lần lượt là trung điểm của BH, CD và AH.
a) Chứng minh rằng DI song song MN
b) Tính số đo góc AMN.
Cho tam giác ABC vuông tại A (AB<AC). Lấy M,E lần lượt là trung điểm cạnh BC, kẻ MD vuông góc với AB tại D, kẻ ME vuông góc với AC tại E.
a) Chứng minh ADME là hình chữ nhật
b) Chứng minh DBME là hình bình hành
c) Kẻ đường cao AH của tam giác ABC. Chứng minh DEMH là hình thang cân
Cho tam giác ABC vuông tại A, AH là đường cao ( H thuộc BC). Kẻ HE, HF lần lượt vuông góc với AB và AC (E thuộc AB, F thuộc AC).
a) Chứng minh AH = EF.
b) Gọi O là giao điểm của AH và EF, K là trung điểm của AC. Qua F kẻ đường thẳng vuông góc với EF cắt BC tại I.Chứng minh tứ giác AOIK là hình bình hành.
c) EF cắt IK tại M. Chứng minh tam giác OMI cân
3) Cho AH là đường cao của ∆ABC cân tại A, từ D trên BC vẽ vuông góc BC cắt AC, AB lần lượt tại M và N. Gọi K là trung điểm MN . Chứng minh : ∆AMN cân
Cho tam giác ABC vuông tại A có AH là đường cao , đường trung tuyến AM . qua H kẻ đường thẳng song song với AB và AC ,lần lượt cắt AC ở P và AB ở D . DP cắt AH ở O và AM ở Q
a)chứng minh AH=DP
b) tam giác MAC là tam giác j ? Vì sao ?
C)chứng minh tam giác APQ vuông ở Q
Bài 4. Cho hình chữ nhật ABCD (AB = 2AD), gọi M là trung điểm của AB. Từ M kẻ MN vuông góc CD tại N
a) Chứng minh tứ giác AMND là hình chữ nhật
b) Gọi K là điểm đối xứng với D qua M. Chứng minh B là trung điểm của KC
c) Gọi I là điểm giao của BD và CM. Biết AB = 2AD. Chứng minh NI = 1/3 BD
cho hcn ABCD ,M là trung điểm của BC, AM cắt DC tại E
a, chứng minh ABEC là hình bình hành
b, Qua D vẽ đường thẳng song song với AC ,đường này cắt BC tại F .Chứng minh BEFD là hình thoi.
c ,Gọi I là giao điểm của AC và BD ,K là trung điểm của È. Chứng minh C là trung điểm của IK.
Cho tâm giác ABC vuông tại A, đường cao AH. Gọi M, N theo thứ tự là các chân đường vuông góc kẻ từ H đến AB, BC . Gọi Ở là giao điểm của AH và MN, K là trung điểm của CH
a) chứng minh tứ giác ÂM HN là bình chữ nhật
b) tính góc MNK
c) chứng minh BO vuông góc với AK