2/ Cho parabol (P): y=x2
và đường thẳng (d) có hệ số góc là a khác 0 đi qua điểm M(1;2)
a/ Cm rằng (d) luôn luôn cắt P tại hai điểm phân biệt với mọi a khác 0.
b/ Gọi xA và xB là hoành độ giao điểm của P và d. Chứng minh rằng xA+xB-xA.xB=2.
1/ Cho đường thẳng (d): y=2x+m+1. Tìm các giá trị của m để đường thẳng (d) cắt trục tung và trục hoành tại A và B sao cho diện tích tam giác OAB bằng 9 (đvdt).
2/ Cho parabol (P): y=x^2
và đường thẳng (d) có hệ số góc là a khác 0 đi qua điểm M(1;2)
a/ Cm rằng (d) luôn luôn cắt P tại hai điểm phân biệt với mọi a khác 0.
b/ Gọi xA và xB là hoành độ giao điểm của P và d. Chứng minh rằng xA+xB-xA.xB=2.
3/ Cho đường thẳng d: (m+1)x + (m-3)y=1
a/ Chứng minh đường thẳng d luôn đi qua một điểm với mọi m và tìm điểm cố định đó.
b/ Gọi h là khoảng cách từ O đến đường thẳng d. Tìm các giá trị của m để h lớn nhất.
Câu 3:
Cho hàm số y = x^2 có đồ thị (P) và đường thẳng (d) đi qua điểm M (1;2) có hệ số góc k ≠ 0.
Chứng minh rằng với mọi giá trị k khác 0. đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt A và B.
cho parabol (P): y=ax^2 (a>0) và đường thẳng (d): y=2x-a^2
a, tìm a để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A;B
b,Gọi Xa; Xb là hoành độ của 2 điểm A và B. tính giá trị nhỏ nhất của biểu thức Q=4/(Xa+Xb) + 1/(Xa.Xb)
Bài 6: Cho (P):y=\(\dfrac{-x^2}{4}\)và đường thẳng (d):y=m.(x-1)-2
a) Chứng minh rằng (d) luôn cắt (P) tại hai điểm phân biệt A và B khi m thay đổi.
b) Gọi xA xB lan luot la hoành độ của A và B. Tìm m để xa2 xb +xb2 .xa dạt giá trị nhỏ nhất và tính giá trị đó?
Cho parabol (P): y=(-x2)/4 và đỉêm M (1;-2)
1. Viết ptdt(d) đi qua M có hệ số góc bằng k.
2. Cmr (d) luôn cắt (P) tại 2 điểm phân biệt A,B khi k thay đổi.
3. Gọi xA,xB là hoành độ của các điểm A và B. Tìm k để E= xA2.xB + xA.xB2 . đạt Gtnn và tìm giá trị này.
Trong mặt phẳng toạ độ Oxy,cho parabol(P):y=-x2 và đường thẳng (d) đi qua điểm I(0;1) có hệ số góc k
Viết phương trình đường thẳng (d).Chứng minh rằng :Với mọi giá trị của k, đường thẳng (d) luôn cắt parabol(P) tại hai điểm phân biệt A và B
Câu 1: a) Cho hàm số y = ax + b, xác định a,b biết đồ thị hàm số đi qua điểm A( -1;2) và song song với đường thẳng y = 2x+3, vẽ đồ thị hàm số với giá trị a, b vừa tìm được b) Cho hàm số : y = mx – m + 2, có đồ thị là đường thẳng (d) Tìm tọa độ điểm cố định mà đường thẳng (d) luôn đi qua với mọi giá trị của m c) Tìm m để đường thẳng d cắt đường thẳng y = 2x -3 tại điểm nằm trên trục hoành. Câu 2: Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm C sao cho AC < BC (C khác A). Tiếp tuyến Bx của đường tròn (O) cắt đường trung trực của BC tại D. Gọi F là giao điểm của DO và BC. a) Chứng minh CD là tiếp tuyến của đường tròn (O) b) Gọi E là giao điểm của AD với đường tròn (O) (với E khác A). Chứng minh DE.DA = DC^2 = DF.DO c) Gọi H là hình chiếu của C trên AB, I là giao điểm của AD và CH. Chứng minh I là trung điểm của CH.
Cho (P ):y=-1/2x2 va diem N(1,-2)
a) CM: pt đường thẳng đi qua M có hệ số góc là k luôn cắt(P) tại 2 điểm phân biệt A, B với mọi giá trị của k
b) Goị xA,xB là hoanh do cua A,B. Tim k de
M=x2A+x2B -2xAxB(xA+xB) đat GTLN. Tim gia tri ay.