Cho hàm số y= f(x) xác định trên R và có đồ thị như hình bên. Tìm tất cả các giá trị thực của tham số m để phương trình
2 f ( x ) - m = 0 có đúng bốn nghiệm phân biệt.
A. 0< m< 8
B.m> 4
C.m< 0 ; m> 8
D. -2< m< 4
Cho hàm số y = f(x) xác định trên R và có đồ thị như hình vẽ.
Tìm tất cả các giá trị thực của tham số m để phương trình f(x) + m - 2019 = 0 có ba nghiệm phân biệt.
Cho hàm số y = f(x) xác định trên ℝ và có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) + m - 2018 = 0 có duy nhất một nghiệm.
A. m ≤ 2015, m ≥ 2019.
B. 2015 < m < 2019.
C. m = 2015, m = 2019.
D. m < 2015, m > 2019.
Cho hàm số y=f(x) liên tục trên tập Rvà có đồ thị (C) như hình vẽ. Có bao nhiêu giá trị nguyên dương của tham số m để phương trình
f
2
(
x
)
-
(
m
-
1
)
f
(
x
)
+
m
-
2
có 12 nghiệm phân biệt?
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Hàm số y= f'(x) có đồ thị như hình vẽ bên dưới:
Số nghiệm thuộc đoạn [-2;6] của phương trình f(x) = f(0) là
A. 5
B. 2
C. 3
D. 4
Cho hàm số y = f x và hàm số y = g x có đạo hàm xác định trên ℝ và có đồ thị như hình vẽ dưới đây:
Có bao nhiêu giá trị nguyên của tham số m để phương trình f x g x = m có nghiệm thuộc - 2 ; 3 ?
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị của tham số m để phương trình f(cos x) = -2m + 1 có nghiệm thuộc khoảng 0 ; π 2 là
A. (-1;1]
B. (0;1)
C. (-1;1)
D. (0;1]
Cho hàm số y = f (x) xác định, liên tục trên đoạn [-1;4]. Hàm số y = f’(x) có đồ thị trên đoạn [-1;4] như hình vẽ dưới đây. Tìm tất cả các giá trị của tham số thực m để bất phương trình f x - m ≥ 0 nghiệm đúng với mọi x thuộc đoạn 3 2 ; 10 3
A. m ≤ f 3
B. m ≥ f 4
C. m ≤ f 3 2
D. m ≥ f 10 3
Cho hàm số y = f(x) liên tục và xác định trên R và có đồ thị như hình vẽ
Có bao nhiêu giá trị nguyên của m để bất phương trình
A. 5
B. Vô số.
C. 7
D. 6