Cho hàm số y=f(x) có đạo hàm f'(x) liên tục trên đoạn [1;4], f(1)=12 và ∫ 1 4 f ' ( x ) d x = 17 . Giá trị của f(4) bằng:
A. 29
B. 5
C. 19
D. 9
Cho hàm số y = f(x) có đạo hàm f’(x) liên tục trên đoạn [1; 4], f(1) = 12 và ∫ 1 4 f ' ( x ) d x = 17 .Giá trị của f(4) bằng
A. 29
B. 5
C. 19
D. 9
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [1;4] và thỏa mãn f(1)=12, ∫ 1 4 f ' ( x ) = 17 . Tính giá trị của f(4)=?
A. f(4)=9.
B. f(4)=19.
C. f(4)=29.
D. f(4)=5.
Cho hàm số y=f(x) có đạo hàm liên tục trên [1;4], biết f(4)=3, f(1)=1 . Tính ∫ 1 4 2 f ' ( x ) d x .
Cho hàm số y=f(x) có đạo hàm liên tục trên ℝ thỏa mãn f'(x) -xf(x) = 0, f x > 0 , ∀ x ∈ ℝ và f(0) = 1. Giá trị của f(1) bằng?
A. 1 e .
B. 1 e .
C. e .
D. e.
Cho hàm số f(x) có đạo hàm trên [1;4] và f(1) = 2; f(4) = 10 Giá trị của I = ∫ 1 4 f ' ( x ) d x là
A. I = 12
B. I = 48
C. I = 8
D. I =3
Cho hàm số f(x) có đạo hàm f'(x) liên tục trên đoạn [1;e] thỏa mãn f 1 = 1 2 và x . f ' x = xf 2 x - 3 f x + 1 x , ∀ x ∈ 1 ; e . Giá trị của f(e) bằng
A. .
B. .
C. .
D. .
Cho hàm số y = f(x) có đạo hàm f'(x). Hàm số y = f'(x) liên tục trên tập số thực và có bảng biến thiên như sau:
Biết rằng f(-1) = 10 3 , f(2) = 6. Giá trị nhỏ nhất của hàm số g(x) = f 3 ( x ) - 3 f ( x ) trên đoạn [-1;2] bằng
A. 10 3
B. 820 27
C. 730 27
D. 198
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [-1;3] và thỏa mãn f(-1) = 4; f(3) = 7. Giá trị của I = ∫ - 1 3 5 f ' ( t ) d t bằng
A. I = 20
B. I = 3
C. I = 10
D. I = 15