Cho hàm số y=f(x) có đạo hàm f'(x) liên tục trên [1;4], f(1)=12 và ∫ 1 4 f ' ( x ) d x = 17 Giá trị của f(4) bằng
Cho hàm số y=f(x) có đạo hàm f'(x) liên tục trên đoạn [1;4], f(1)=12 và ∫ 1 4 f ' ( x ) d x = 17 . Giá trị của f(4) bằng:
A. 29
B. 5
C. 19
D. 9
( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [-1;3] và thỏa mãn f(-1) = 4; f(3) = 7. Giá trị của I = ∫ - 1 3 5 f ' ( t ) d t bằng
A. I = 20
B. I = 3
C. I = 10
D. I = 15
Cho hàm số f(x) có đạo hàm trên đoạn [1;3], f(1) = 1 và f(3) = 2018. Giá trị của tích phân I = ∫ 1 3 f ' ( x ) d x
A. I = 2017.
B. I = -2017.
C. I = 2018.
D. I = 2016.
Cho hàm số f(x) và g(x) có đạo hàm trên [1;4] và thỏa mãn hệ thức sau với mọi x ∈ [1;4]
f(1)=2g(1)=2; f'(x)= 1 x x . 1 g ( x ) ; g(x)= - 2 x x . 1 f ( x ) . Tính I= ∫ 1 4 [ f ( x ) . g ( x ) ] d x
Cho hàm số f(x) có đạo hàm trên R và thỏa mãn f(2016) = a, f(2017) = b, a ; b ∈ ℝ . Giá trị I = ∫ 2017 2016 2015 f ' x . f 2014 x d x bằng:
A. I = b 2017 - a 2017
B. I = a 2016 - b 2016
C. I = a 2015 - b 2015
D. I = b 2015 - a 2015
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [1;4] và thỏa mãn f(1)=12, ∫ 1 4 f ' ( x ) = 17 . Tính giá trị của f(4)=?
A. f(4)=9.
B. f(4)=19.
C. f(4)=29.
D. f(4)=5.
Cho hàm số f(x) có đạo hàm trên R, f ( - 1 ) = - 2 và f ( 3 ) = 2 . Tính I= ∫ - 1 3 f ' ( x ) d x .