Cho hàm số y = x 3 + 3 x 2 - 2 x - 3 có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến có hệ số góc nhỏ nhất.
A.
B.
C.
D.
Viết phương trình tiếp tuyến của đồ thị hàm số:
\(y=x^3-6x+5\)
a, Tại điểm có hoành độ \(x_0=1\)
b, Tại điểm có tung độ \(y_0=5\)
c, Hệ số góc \(k=-9\)
Viết phương trình tiếp tuyến của đồ thị hàm số:
\(y=\dfrac{-x+2}{x+1}\)
a, Tại giao điểm của đồ thị vs trục hoành
b, Tại giao điểm của đồ thị vs trục tung
c, Hệ số góc \(k=-3\)
Cho hàm số: y = 2 x + 1 x - 2
Viết phương trình tiếp tuyến của đồ thị (C) , biết hệ số góc của tiếp tuyến bằng –5.
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số:
y = − x 3 + 3x + 1
b) Chỉ ra phép biến hình biến (C) thành đồ thị (C’) của hàmsố:
y = ( x + 1 ) 3 − 3x − 4
c) Dựa vào đồ thị (C’), biện luận theo m số nghiệm của phương trình:
( x + 1 ) 3 = 3x + m
d) Viết phương trình tiếp tuyến (d) của đồ thị (C’), biết tiếp tuyến đó vuông góc với đường thẳng
Cho hàm số: y = – x 4 – x 2 + 6
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
b) Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến vuông góc với đường thẳng: y = x/6 –1
Cho hàm số: y = – x 4 – x 2 + 6. Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến vuông góc với đường thẳng: y = x/6 –1
Cho hàm số 3 2 y x x = − +3 có đồ thị (C) . Gọi 1 d , 2 d là tiếp tuyến của đồ thị (C) vuông góc với đường thẳng x y − + = 9 1 0 . Tính khoảng cách giữa hai đường thẳng 1 d , 2 d .
Gọi (C) là đồ thị của hàm số y = x 4 + x Tiếp tuyến của đồ thị (C) vuông góc với đường thẳng d:x+5y=0 có phương trình là
A.
B.
C.
D.