Xét các khẳng định sau:
(I). Nếu hàm số y = f(x) có giá trị cực đại là M và giá trị cực tiểu là m thì M > m
(II). Đồ thị hàm số y = a x 4 + b x 2 + c ( a ≠ 0 ) luôn có ít nhất một điểm cực trị
(III). Tiếp tuyến (nếu có) tại một điểm cực trị của đồ thị hàm số luôn song song với trục hoành.
Số khẳng định đúng là :
A. 0
B. 3
C. 2
D. 1
Cho 2 hàm số y = f x = log a x ; y = g x = a x . Xét các mệnh đề sau:
I. Đồ thị của hai hàm số f x , g x luôn cắt nhau tại một điểm
II. Hàm số f x + g x đồng biến khi a > 1 , nghịch biến khi 0 < a < 1
III. Đồ thị hàm số f x nhận trục Oy làm tiệm cận
IV. Chỉ có đồ thị hàm số f x có tiệm cận
Số mệnh đề đúng là
A. 1
B. 4
C. 2
D. 3
Cho các mệnh đề sau
I. Đồ thị hàm số y = ax + b c x + d a c ≠ 0 , a d − c b ≠ 0 nhận giao điểm hai đường tiệm cận làm tâm đối xứng
II. Số điểm cực trị tối đa của hàm số trùng phương là ba
III. Bất kỳ đồ thị hàm số nào cũng đều phải cắt trục tung và trục hoành
IV. Số giao điểm của hai đồ thị hàm số y = f x và y = g x là số nghiệm phân biệt của phương trình: f x = g x
Trong các mệnh đề trên mệnh đề đúng là
A. (I),(III)
B. (II),(III)
C. (I) (II),(III)
D. (I) (II),(IV)
Cho hai hàm số f ( x ) = log 2 x , g ( x ) = 2 x . Xét các mệnh đề sau:
I. Đồ thị hàm số đối xứng với nhau qua đường thẳng y=x
II. Tập xác định của hai hàm số trên là R
III. Đồ thị hai hàm số cắt nhau tại đúng 1 điểm
IV. Hai hàm số đều đồng biến trên tập xác định của nó
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên
A. 2
B. 3
C. 1
D. 4
Cho hai hàm số y = e x và y = ln x . Xét các mệnh đề sau
(I) Đồ thị hai hàm số đối xứng qua đường thẳng y=x
(II) Tập xác định của hai hàm số trên là R
(III) Đồ thị hai hàm số cắt nhau tại đúng một điểm.
(IV) Hai hàm số đều đồng biến trên tập xác định của nó.
Có bao nhiêu mệnh đề sai trong các mệnh đề trên?
A. 2
B. 3
C. 1
D. 4
Cho hai hàm số
f
x
=
log
0
,
5
x
và
g
x
=
2
−
x
. Xét các mệnh đề sau
(I) Đồ thị hàm số đối xứng nhau qua các đường thẳng y=-x
(II) Tập xác định của hai hàm số trên là R
(III) Đồ thị của hai hàm số cắt nhau tại đúng một điểm
(IV) Hai hàm số đều nghịch biến trên tập xác định của nó
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên
A. 3
B. 2
C. 1
D. 4
Cho hàm số f x = log 2 x , g x = 2 x . Xét các mệnh đề sau:
(I) Đồ thị hai hàm số đối xứng nhau qua đường thẳng y = x
(II) Tập xác định của hai hàm số trên là ℝ
(III) Đồ thị hai hàm số cắt nhau tại đúng 1 điểm.
(IV) Hai hàm số đều đồng biến trên tập xác định của nó.
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 2
B. 3
C. 1
D. 4
Cho hàm số y = 2 x - 3 có đồ thị là đường thẳng d . Xét các phát biểu sau
I : Hàm số y = 2 x - 3 đồng biến trên R.
I I : Đường thẳng d song song với đồ thị hàm số 2 x + y - 3 = 0
I I I : đường thẳng d cắt trục O x tại A 0 ; - 3
Số các phát biểu đúng là
A. 2
B. 0
C. 3
D. 1
Cho hàm số y = f(x) có đồ thị như hình vẽ dưới đây:
Trong các khẳng định sau:
I. Đồ thị hàm số có tiệm cận ngang là đường thẳng y = 2
II. Hàm số đạt cực tiểu tại x = -2
III. Hàm số nghịch biến trong khoảng − ∞ ; 0 và đồng biến trong khoảng 0 ; ∞
IV. Phương trình f(x) = m có hai nghiệm phân biệt khi và chỉ khi . Có bao nhiêu khẳng định đúng
A. 1
B. 2
C. 3
D. 4