Cho hàm số y = − x 3 + 3 x 2 + 9 x có đồ thị (C). Gọi A, B, C, D là bốn điểm trên đồ thị (C) với hoành độ lần lượt là a, b, c, d sao cho tứ giác ABCD là một hình thoi đồng thời hai tiếp tuyến tại A, C song song với nhau và đường thẳng AC tạo với hai trục tọa độ một tam giác cân. Tính tích abcd.
A. 144
B. 60
C. 180
D. 120
Cho d là đường thẳng đi qua điểm A - 1 ; 3 và có hệ số góc m. Gọi S là tập hợp các giá trị của tham số m để đường thẳng d cắt đồ thị C của hàm số y = x 3 - 3 x + 1 tại ba điểm phân biệt A, B, C sao cho tiếp tuyến với đồ thị tại B và C cắt nhau tại điểm I nằm trên đường tròn đường kính BC. Tính tổng bình phương các phần tử thuộc tập hợp S.
A. 16 9
B. 34 9
C. 38 9
D. 34 3
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A (1;-1;2) và đường thẳng d : x 1 = y 2 = z + 2 - 2 . Mặt cầu (S) tâm A cắt đường thẳng d tại 2 điểm phân biệt B, C sao cho diện tích tam giác ABC bằng 12. Phương trình mặt cầu (S) là:
A. S : x - 1 2 + y + 1 2 + z - 2 2 = 36
B. S : x - 1 2 + y + 1 2 + z - 2 2 = 25
C. S : x - 1 2 + y + 1 2 + z - 2 2 = 144
D. S : x - 1 2 + y + 1 2 + z - 2 2 = 64
Cho hàm số \(y=x^3-3x^2+2\) có đồ thị (C). Gọi M, N là hai điểm phân biệt trên (C) sao cho hai tiếp tuyến M, N song song với nhau và đường thăng MN cắt trục hoành, trục tung lần lượt tại A, B khác O sao cho \(AB=\sqrt{10}\). Viết phương trình 2 tiếp tuyến đó
Cho hàm số y = 2 x + 1 x − 1 có đồ thị là (H) và đường thẳng d có hệ số góc m và đi qua điểm A − 2 ; 2 . Giả sử d cắt (H) tại hai điểm phân biệt M, N. Qua M kẻ các đường thẳng lần lượt song song với các trục tọa độ, qua N kẻ các đường thẳng lần lượt song song với các trục tọa độ. Tìm số các giá trị thực của tham số m sao cho bốn đường thẳng đó tạo thành một hình vuông.
A. 0
B. 1
C. 2
D. 3
Cho hàm số y = x + 2 2 x + 3 có đồ thị (C). Đường thẳng (d) có phương trình y = a x + b là tiếp tuyến của (C), biết (d) cắt trục hoành tại A và cắt trục tung tại B sao cho tam giác OAB cân tại O, với O là gốc tọa độ. Tính a+ b
A. 0
B. -2
C. -1
D. -3
Cho hàm số y = x + 2 2 x + 3 có đồ thị (C). Đường thẳng d có phương trình y = a x + b là tiếp tuyến của (C), biết d cắt trục hoành tại A và cắt trục tung tại B sao cho tam giác OAB cân tại O, với O là gốc tọa độ. Tính a+b
A. -1
B. -2
C. 0
D. -3
1.Trên mp có 11 đường thẳng đôi 1 ko song song C/m:có 2 đường thẳng tạo với nhau 1 góc <17 độ
2.Cho (O) đường kính AB.Lấy C ngoài đoạn thẳng AB (C nằm trên đường thẳng AB).Kẻ 2 tiếp tuyến CE và CF. AB cắt EF tại I, kẻ cát tuyến CMN. C/m: góc AIM= góc BIN
3.Cho tam giác ABC ngoại tiếp đường tròn (O).Biết D,E,F là các tiếp điểm , D thuộc AC, E thuộc AB, F thuộc BC Biết OE=r, AB=c, AC=b, BC=a
C/m:a) (a+b+c)*r=2S ( S là diện tích tam giác ABC)
b)nếu (a+b+c)(a+b-c)=4S thì tam giác ABC vuông
Cho hàm số y = x - 1 x + 2 , gọi d là tiếp tuyến với đồ thị hàm số tại điểm có hoành độ bằng m - 2. Biết đường thẳng d cắt tiệm cận đứng của đồ thị hàm số tại điểm A(x1;y1) và cắt tiệm cận ngang của đồ thị hàm số tại điểm B(x2;y2). Gọi S là tập hợp các số m sao cho x2 + y1 = -5. Tính tổng bình phương các phần tử của S
A. 4
B. 0
C. 10
D. 9