Cho hàm số y=x²-mx-3(1) a/Tìm m để đồ thị hàm số (1) cắt Õ tại điểm có hoành độ bằng 3 b/lập bảng biến thiên và vẽ đồ thị khi m=-2 c/Tìm tọa độ giao điểm (P) với đường thẳng (d)y=2x+9 d/tìm m để parabol của hàm số có đỉnh nằm trên trục Ox
Bài 1
a) Xét sự biến thiên và vẽ đồ thị của hàm số \(y=-x^2+x-1\)
b) Hãy sử dụng đò thị để biệ luận theo tham số giao điểm của parabol \(y=-x^2+x-1\)và đường thẳng y=m
cho hàm số y = ax^2 + bx + c(a khác 0). tìm a, b, c biết hàm số đó có gtln = 5 khi x = -2 và đồ thị đi qua M(1;-1)
Cho hàm số y = f(x) = mx + 2m − 3 có đồ thị (d). gọi A, B là hai điểm thuộc đồ thị
và có hoành độ lần lượt là −1 và 2.
1 Xác định tọa độ hai điểm A và B.
2 Tìm m để cả hai điểm A và B cùng nằm phía trên trục hoành.
3 Tìm điều kiện của m để f(x) > 0, ∀x ∈ [−1; 2]
1) Cho hàm số: \(y=x^2-3x+4\) có đồ thị là P và đường thẳng d có phương trình:
\(y=2x-m\), và m là tham số. Tìm các giá trị của m để d cắt P tại hai điểm phân biệt \(A,B\) sao cho: \(OA^2+OB^2=57\) và khi đó O là toa độ góc
2) Cho hàm số \(f\left(x\right)=\sqrt{3-x}-\sqrt{3+x}-x^3-x\). Tìm tất cả giá trị của tham số a để tập nghiệm của bất phương trình \(f\left(2x-1\right)>f\left(-2a\right)\) có ít nhất là 3 số nguyên
cho hàm số y =3mx+m-2 (m là tham số) có đồ thị là đường thẳng (d)
a)tìm m để (d) đi qua điểm A(-1,4)
b)tìm m để (d) song song với đường thẳng (Δ) :y =6x -1
c) điểm cố định M mà đường thẳng (d) đi qua
Chứng Minh rằng đường thẳng (d) luôn đi qua một điểm cố định với mọi m
Cho hàm số y = m x 2 − 2(m − 1)x + 1 (m ≠ 0) có đồ thị (Cm). Tịnh tiến ( C m ) qua trái 1 đơn vị ta được đồ thị hàm số ( C m ' ). Giá trị của m để giao điểm của ( C m ) và ( C m ' ) có hoành độ x = 14 thỏa mãn điều kiện nào dưới đây?
A. 1 < m < 5
B. m > 4
C. 0 < m < 2
D. −2 < m < 0
Điểm nào sau đây thuộc đồ thị của hàm số y = | x + 2 | + | 3 x - 1 | + | - x + 4 | ?
A. M(0; 7) B. N(0; 5)
C. P(-2; -1) D. Q(-2; 1)
Để đồ thị hàm số y = m x 2 − 2mx – m2 − 1 (m ≠ 0) có đỉnh nằm trên đường thẳng y = x − 2 thì m nhận giá trị nằm trong khoảng nào dưới đây?
A. (2; 6).
B. (− ∞ ; −2).
C. (0; 2).
D. (−2; 2).