Cho hàm số y = f(x) xác định trên R\{-1}, liên tục trên từng khoảng xác định và có bảng biến thiên như dưới đây:
Tìm tập hợp tất cả các số thực của m để phương trình f(x)=m có nghiệm thực duy nhất
A . ( 0 ; + ∞ ) ∪ - 1
B . ( 0 ; + ∞ )
C . [ 0 ; + ∞ )
D . [ 0 ; + ∞ ) ∪ - 1
Cho hàm số y = f(x) xác định trên R \ {1}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:
Số giá trị nguyên của tham số m để phương trình f(x) = m có 3 nghiệm thực phân biệt là
A. 0.
B. 3.
C. 2.
D. 1.
Cho hàm số y=f(x) xác định, liên tục trên R\{1} và có bảng biến thiên như hình dưới đây
Tập hợp S tất cả các giá trị của m để phương trình f(x)=m có đúng ba nghiệm là
A. (-1;1)
B. [-1;1]
C. {1}
D. {-1;1}
Cho hàm số y=f(x) xác định trên R / 2 , liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau
Tìm tập hợp các giá trị của tham số m để phương trình 2f(x)-m=0 có hai nghiệm.
A. ( - ∞ ; - 2 ) ∪ ( 6 ; + ∞ )
B. ( - ∞ ; - 6 ) ∪ ( - 2 ; + ∞ )
C. ( 2 ; 6 )
D. ( - 6 ; - 2 )
Cho hàm số y=f(x) xác định trên R ∖ { - 1 ; 1 } liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau.
Tìm tập hợp tất cả các giá trị của tham số m sao cho phương trình f(x)=m có đúng 1 nghiệm.
A. { - 3 2 ; 3 2 ; 1 }
B. { - 3 2 ; 3 2 }
C. { 1 }
D. ( 1 ; + ∞ )
Cho hàm số y=f(x) xác định trên R\{0}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ sau:
Tìm tất cả các giá trị của tham số thực m để phương trình f(x) -m=0
A. m ∈ 3 ; + ∞
B. m ∈ − ∞ ; 1 ∪ 3 ; + ∞
C. m ∈ 3 ; + ∞
D. m ∈ − ∞ ; 1 ∪ 3 ; + ∞
Cho hàm số y=f(x) xác định và liên tục trên ℝ và có bảng biến thiên như sau:
Số nghiệm của phương trình f(x)-3=0 là
A. 3.
B. 0.
C. 1.
D. 2.
Cho hàm số y=f(x) xác định, liên tục trên R\{1} và có bảng biến thiên như sau
Điều kiện của m để phương trình f(x)=m có 3 nghiệm phân biệt
A. m < 0
B. m > 0
C. m < 0 < 27 4
D. m > 27 4
Cho hàm số y=f(x) xác định trên ℝ \ 0 , liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ sau:
Tìm tất cả các giá trị của tham số thực m để phương trình f(x)-m=0 có nghiệm duy nhất.
A. m ∈ 3 ; + ∞
B. m ∈ − ∞ ; 1 ∪ 3 ; + ∞
C. m ∈ 3 ; + ∞
D. m ∈ − ∞ ; 1 ∪ 3 ; + ∞