Đáp án là B
Trên khoảng (0;6) hàm số chứa khoảng (0;3) đồng biến và (3;6) nghịch biến. Nên đáp án B sai
Đáp án là B
Trên khoảng (0;6) hàm số chứa khoảng (0;3) đồng biến và (3;6) nghịch biến. Nên đáp án B sai
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f’(x) và các khẳng định sau:
(1). Hàm số y=f(x) đồng biến trên khoảng 1 ; + ∞
(2). Hàm số y=f(x) nghịch biến trên khoảng - ∞ ; - 2
(3). Hàm số y=f(x) nghịch biến trên khoảng - 2 ; 1 .
(4). Hàm số y = f x 2 đồng biến trên khoảng - 1 ; 0
(5). Hàm số y = f x 2 nghịch biến trên khoảng (1;2)
Số khẳng định đúng là
A. 4
B. 3
C. 2
D. 5
Cho hàm số y=f(x) xác định và liên tục trên ℝ , có bảng biến thiên như hình bên. Hàm số đã cho nghịch biến trên khoảng nào sau đây?
A. (-3;2)
B. - ∞ ; 0
C. 1 ; + ∞
D. (0;1)
Cho hàm số f(x) có đạo hàm liên tục trên ℝ . Bảng biến thiên của hàm số f’(x) trên đoạn [-1;3] như hình
Hàm số g x = f 1 - x 2 + x nghịch biến trên khoảng nào trong các khoảng sau ?
A. (-4;-2)
B. (-2;0)
C. (0;2)
D. (2;4)
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Bảng biến thiên của hàm số y=f'(x) được cho như hình vẽ bên. Hàm số y = f ( 1 - x 2 ) + x nghịch biến trên khoảng
A. (-4;-2)
B. (2;4)
C. (0;2)
D. (-2;0)
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên. Hàm số y = f(x) nghịch biến trên khoảng nào trong các khoảng sau đây?
A. (-1;0)
B. (-1;1)
C. - ∞ ; - 1
D. 0 ; + ∞
Cho hàm số y=f(x) liên tục trên khoảng (-3;2), có bảng biến thiên như hình vẽ bên. Khẳng định nào sau đây là sai?
A. không có m i n - 3 ; 2 y
B. y C Đ = 0
C. m a x - 3 ; 2 y = 0
D. y C T = - 2
Cho hàm số y = f ( x ) xác định trên ℝ \ { - 1 } liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau :
Khẳng định nào dưới đây sai ?
A. Hàm số đồng biến trên khoảng ( - ∞ ; 1 )
B. Giá trị lớn nhất của hàm sốy=f(x) trên khoảng ( - 1 ; + ∞ ) bằng 3.
C. Hàm số đạt cực đại tại x=1
D. Đồ thị hàm số y=f(x) có 3 đường tiệm cận.
Cho hàm số y=f(x) có bảng biến thiên như hình dưới đây.
I. Hàm số đồng biến trên khoảng (-3;-2)
II. Hàm số đồng biến trên khoảng − ∞ ; 5 .
III. Hàm số nghịch biến trên khoảng − 2 ; + ∞ .
IV. Hàm số đồng biến trên khoảng - ∞ ; - 2
Số mệnh đề sai trong các mệnh đề trên là
A. 2.
B. 3.
C. 4.
D. 1.
Cho hàm số y = f(x) có đạo hàm liên tục trên R. Bảng biến thiên của hàm số y = f '(x) được cho như hình vẽ bên. Hàm số y = f 1 − x 2 + x nghịch biến trên khoảng
A. (2;4)
B. (-4;-2)
C. (-2;0)
D. (0;2)
Cho hàm số y = f(x) xác định trên ℝ \ 1 , liên tục trên các khoảng xác định của nó và có bảng biến thiên như hình vẽ:
Khẳng định nào sau đây đúng?
A. Đồ thị hàm số có 3 tiệm cận.
B. Phương trình f(x) = m có 3 nghiệm thực phân biệt thì m ∈ 1 ; 2 .
C. Giá trị lớn nhất của hàm số là 2.
D. Hàm số đồng biến trên - ∞ ; 1 .