Cho hàm số f(x) có đạo hàm liên tục trên ℝ và thỏa mãn f(x) > 0, ∀ x ∈ ℝ . Biết f(0) = 1 và f ' ( x ) = ( 6 x - 3 x 2 ) f ( x ) . Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có nghiệm duy nhất.
Cho hàm số y= f(x) Hàm số y= f’(x) có bảng biến thiên như sau
Bất phương trình f ( x ) < 3 e x + 2 + m có nghiệm x ∈ ( - 2 ; 2 ) khi và chỉ khi
A.
B.
C.
D.
Cho hàm số y=f(x) có đạo hàm trên ℝ . Bảng biến thiên của hàm số y=f'(x) như hình dưới
Tìm m để bất phương trình m + 2 sin x ≤ f ( x ) nghiệm đúng với mọi x ∈ 0 ; + ∞ .
A. m < f(0) +1
B. m < f(1)
C. m < f(0)
D. m < f(0) -1
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình bên. Phương trình f( 2 sin x) = m có đúng ba nghiệm phân biệt thuộc đoạn - π ; π khi và chỉ khi
A. m ∈ - 3 ; 1
B. m ∈ - 3 ; 1
C. m ∈ [ - 3 ; 1 )
D. m ∈ ( - 3 ; 1 ]
Cho hàm số y = f(x) có đạo hàm liên tục trên R và đồ thị hàm số y = f'(x) như hình vẽ. Bất phương trình f ( x ) ≤ 3 x - 2 x + m có nghiệm trên ( - ∞ ; 1 ] khi và chỉ khi
Cho hàm số f ( x ) = e x 2 + 1 ( e x - e - x ) Có bao nhiêu số nguyên dương m thỏa mãn bất phương trình f ( m - 7 ) + f ( 12 m + 1 ) ≤ 0
A. 4
B. 6.
C. 3.
D. 5.
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị thực của tham số m để phương trình f(2sin x +1) = m có nghiệm thuộc nửa khoảng [ 0 ; π 6 ) là:
A. (-2;0]
B. (0;2]
C. [-2;2)
D. (-2;0)
Cho hàm số y= f(x).Hàm số y= f’(x) có bảng biến thiên như sau
Bất phương trình f ( e x ) < e x + m nghiệm đúng với mọi x ∈ ( - 1 ; 1 ) khi và chỉ khi
A.
B.
C.
D.
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình bên. Phương trình f(2sin x) = m có đúng ba nghiệm phân biệt thuộc đoạn - π ; π khi và chỉ khi
A. m ∈ - 3 ; 1
B. m ∈ - 3 ; 1
C. m ∈ [ - 3 ; 1 )
D. m ∈ ( - 3 ; 1 ]