Đáp án C
Hàm số không có giá trị nhỏ nhất vì lim x → − ∞ f x = − ∞ .
Đáp án C
Hàm số không có giá trị nhỏ nhất vì lim x → − ∞ f x = − ∞ .
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f' (x) như hình vẽ bên. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
1. Hàm số g(x) có 3 điểm cực trị.
2. Hàm số g(x)đạt cực tiểu tại x = 0.
3. Hàm số g(x)đạt cực đại tại x = 2.
4. Hàm số g(x)đồng biến trên khoảng (-2;0).
5. Hàm số g(x)nghịch biến trên khoảng (-1;1).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 1.
B. 4.
C. 3.
D. 2.
Cho hàm số y=f(x) xác định và liên tục trên ℝ , có bảng biến thiên như hình bên. Hàm số đã cho nghịch biến trên khoảng nào sau đây?
A. (-3;2)
B. - ∞ ; 0
C. 1 ; + ∞
D. (0;1)
Cho hàm số y=f(x) liên tục trên khoảng (-3;2), có bảng biến thiên như hình vẽ bên. Khẳng định nào sau đây là sai?
A. không có m i n - 3 ; 2 y
B. y C Đ = 0
C. m a x - 3 ; 2 y = 0
D. y C T = - 2
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình dưới đây:
Xét các mệnh đề sau:
(I). Hàm số nghịch biến trên khoảng (0;1)
(II). Hàm số đồng biến trên khoảng (-1;2)
(III). Hàm số có ba điểm cực trị
(IV). Hàm số có giá trị lớn nhất bằng 2.
Số mệnh đề đúng trong các mệnh đề trên là:
A. 4
B. 2
C. 3
D. 1
Cho hàm số y = f(x) liên tục trên nửa khoảng − 2 ; 3 , có bảng biến thiên như hình vẽ
Khẳng định nào sau đây là khẳng định đúng?
A. Hàm số đạt cực tiểu tại x = -1
B. max − 2 ; 3 y = 2
C. min − 2 ; 3 y = − 3
D. Cực đại của hàm số bằng 0
Cho hàm số y = f(x) có đạo hàm liên tục trên R. Bảng biến thiên của hàm số y = f '(x) được cho như hình vẽ bên. Hàm số y = f 1 − x 2 + x nghịch biến trên khoảng
A. (2;4)
B. (-4;-2)
C. (-2;0)
D. (0;2)
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Bảng biến thiên của hàm số y=f'(x) được cho như hình vẽ bên. Hàm số y = f ( 1 - x 2 ) + x nghịch biến trên khoảng
A. (-4;-2)
B. (2;4)
C. (0;2)
D. (-2;0)
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có bảng biến thiên như hình bên dưới. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
A. (1;+∞)
B.(-1;0)
C. (-∞;1)
D.(0;1)
Cho hàm số f (x) xác định và liên tục trên đoạn [-2;3] và có bảng biến thiên như hình vẽ sau
Giá trị nhỏ nhất của hàm số f (x) trên đoạn [-2;3] bằng
A. -2
B. 5.
C. 0.
D. 1
Cho hàm số y = f(x) xác định trên D = ℝ \ - 2 ; 2 , liên tục trên mỗi khoảng xác định và có bảng biến thiên sau
Có bao nhiêu khẳng định đúng trong các khẳng định sau?
(I). Đồ thị hàm số có 2 tiệm cận. (II). Hàm số đạt giá trị lớn nhất bằng 0.
(III). Hàm số có đúng 1 điểm cực trị. (IV). Đồ thị hàm số có 3 tiệm cận.
A. 0
B. 1
C. 2
D. 3