Cho hàm số y = f(x) có đồ thị như hình vẽ. Điểm cực đại của đồ thị hàm số là

A. M(0; 2)
B. N(-2; -14)
C. P(2; -14)
D. N(-2; -14) và P(2; -14)
Cho hàm số y = f(x) có đồ thị như hình vẽ bên dưới.

Hàm số đã cho đạt cực tiểu tại điểm
A. x= -1
B. x=1
C. x= 0
D. x= 2
Cho hàm số f(x) có đạo hàm cấp hai f''(x) liên tục trên R và có đồ thị hàm số f(x) như hình vẽ bên. Biết rằng hàm số f(x) đạt cực đại tại điểm x = 1 đường thẳng
trong hình vẽ bên là tiếp tuyến của đồ thị hàm số f(x) tại điểm có hoành độ x = 2 . Tích phân
∫
0
ln
3
e
x
f
"
e
x
+
1
2
d
x
bằng

A. 8
B. 4
C. 3
D. 6
Cho hàm số y=f(x) có bảng biến thiên như hình bên dưới.
Phương trình đường thẳng đi qua hai điểm cực đại và cực tiểu của đồ thị hàm số đã cho là
![]()
![]()

![]()
Cho hàm số f(x) có đạo hàm cấp hai f'''(x) liên tục trên R và đồ thị hàm số f(x) như hình vẽ bên. Biết rằng hàm số f(x) đạt cực đại tại điểm x=1; đường thẳng ∆ trong hình vẽ bên là tiếp tuyến của đồ thị hàm số f(x) tại điểm có hoành độ x=2. Tích phân ∫ 0 ln 3 e x f ' ' ( e x + 1 2 ) d x bằng

A. 8
B. 4
C. 3
D. 6
Cho hàm số y=f(x). Hàm số y=f'(x) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số y=f(x)

A. 3.
B. 4
C. 1
D. 2.
Cho hàm số y= f(x) có đạo hàm trên R Đồ thị hàm số y= f’(x) như hình vẽ bên dưới.

Hàm số
đạt cực đại tại
A. x= -1
B. x= 0
C. x= 1
D. x= 2
Cho hàm số y=f(x) có đồ thị là đường cong trong hình vẽ bên. Hàm số f(x) đạt cực đại tại điểm nào sau đây?

A. x=-1
B. x=-2
C. x=1
D. x=2
Cho hàm số y = f(x) có đạo hàm liên tục trên ℝ . Đồ thị hàm số y = f'(x) được cho như hình vẽ bên.

Số điểm cực trị của hàm số g(x) = f(x-2017) - 2018x + 2019 là:
A. 1.
B. 3.
C. 2.
D. 0.