Cho hàm số y=f(x) có đạo hàm trên ℝ . Bảng biến thiên của hàm số y=f'(x) như hình dưới
Tìm m để bất phương trình m + 2 sin x ≤ f ( x ) nghiệm đúng với mọi x ∈ 0 ; + ∞ .
A. m < f(0) +1
B. m < f(1)
C. m < f(0)
D. m < f(0) -1
Cho hàm số y=f(x) có đạo hàm trên ℝ . Bảng biến thiên của hàm số y=f'(x) như hình dưới
Tìm m để bất phương trình m + x 2 ≤ f ( x ) + 1 3 x 3 nghiệm đúng với mọi x ∈ 0 ; 3
A. m<f(0)
B. m ≤ f ( 0 ) .
C. m ≤ f ( 3 )
D. m< f ( 1 ) - 2 3
Cho hàm số y = f(x) có bảng biến thiên như hình dưới đây. Tìm tất cả các giá trị của m để phương trình f( 4 x - x 2 ) = log 2 m có 4 nghiệm thực phân biệt.
A. m ∈ (0;8).
B. m ∈ ( 1 2 ;8).
C. m ∈ (-1;3).
D. m ∈ (0; 1 2 ).
Cho hàm số y=f(x) có bảng biến thiên như sau:
Tìm m để phương trình 2f(x+2019) - m = 0 có 4 nghiệm phân biệt.
A. m ∈ 0 ; 2
B. m ∈ - 2 ; 2
C. m ∈ - 4 ; 2
D. m ∈ - 2 ; 1
Cho hàm số y= f(x) Hàm số y= f’(x) có bảng biến thiên như sau
Bất phương trình f ( x ) < 3 e x + 2 + m có nghiệm x ∈ ( - 2 ; 2 ) khi và chỉ khi
A.
B.
C.
D.
Cho hàm số y = f(x) liên tục trên các khoảng - ∞ ; 0 và 0 ; + ∞ có bảng biến thiên như sau
Tìm m để phương trình f(x) = m có 4 nghiệm phân biệt.
A. .
B. .
C. .
D. .
Cho hàm số y= f(x).Hàm số y= f’(x) có bảng biến thiên như sau
Bất phương trình m + e f ( x ) < e x có nghiệm khi và chỉ khi
A.
B.
C.
D.
Cho hàm số f(x) liên tục trên R có bảng biến thiên dưới đây. Tìm điều kiện của m để phương trình |f(x)| = m có 4 nghiệm phân biệt
Cho hàm số y=f(x) có bảng biến thiên dưới đây:
Để phương trình 3f(2x -1) = m-2 có 3 nghiệm phân biệt thuộc [0;1] thì giá trị của tham số m thuộc khoảng nào dưới đây?
A. - ∞ ; - 3
B. (1;6)
C. ( 6 ; + ∞ )
D. (-3;1)