Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d (a;b;c;d ∈ R, a ≠ 0) có đồ thị (C). Biết rằng đồ thị (C) đi qua gốc tọa độ và có đồ thị hàm số y = f’(x) cho bởi hình vẽ sau đây.
Tính giá trị H = f(4) – f(2)
A. H = 51
B. H = 54
C. H = 58
D. H = 64
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d (a,b,cÎR, a≠0) có đồ thị (C). Biết đồ thị (C) đi qua A(1;4) và đồ thị hàm số y = f ’ ( x ) cho bởi hình vẽ. Giá trị f ( 3 ) - 2 f ( 1 ) là
A. 30
B. 24
C. 26
D. 27
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d ( a , b , c ∈ ℝ , a ≠ 0 ) có đồ thị (C). Biết đồ thị (C)đi qua A(1;4) và đồ thị hàm số y ' = f x cho bởi hình vẽ.
Giá trị f 3 − 2 f 1 là
A. 30
B. 27
C. 25
D. 26
Cho hàm số y = f x = a x 3 + b x 2 + c x + d có đồ thị (C). Biết đồ thị hàm số (C) có hai điểm cực trị A(2;-27) ; B(-4;81). Tính S=-a+b-c+d
A. S = 24
B. S = 27
C. S = 31
D. S = 32
Cho hàm số y = f x = a x 3 + b x 2 + c x + d a , b , c ∈ ℝ , a ≠ 0 có đồ thị (C). Biết rằng đồ thị (C) tiếp xúc với đường thẳng y = 4 tại điểm có hoành độ âm và đồ thị của hàm số y = f '(x) cho bởi hình vẽ dưới đây. Tính diện tích S của hình phẳng giới hạn bởi đồ thị (C) và trục hoành.
A. S = 9
B. S = 5 4
C. S = 21 4
D. S = 27 4
cho hàm số y = a/x ; a) xác định hệ số a biết đồ thị của nó đi qua điểm (-2;2) , b) vẽ đò thị hàm số đó và đường thẳng y = 2 trên cùng 1 hệ trục tọa độ Oxy ( đồ thị hàm số là đường cong hypebol) c) dựa vào đồ thị để tìm các giá trị của x sao cho 1/x<-2
Cho hàm số y = a x − 4 x + b có đồ thị C . Đồ thị C nhận đường thẳng x = 2 làm tiệm cận đứng và C . đi qua điểm A 4 ; 2 . Tính giá trị của biểu thức P = a + b .
A. P = 0.
B. P = − 8.
C. P = 3.
D. P = 5.
Cho hàm số y = f(x) =(ax+b)/(cx+d)(a,b,c,d ϵ R;c ≠ 0;d ≠ 0) có đồ thị (C). Đồ thị của hàm số y = f’(x) như hình vẽ dưới đây. Biết (C) cắt trục tung tại điểm có tung độ bằng 2. Tiếp tuyến của (C) tại giao điểm của (C) và trục hoành có phương trình là
A. x – 3y +2 = 0
B. x + 3y +2 = 0
C. x – 3y - 2 = 0
D. x + 3y -2 = 0
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C) biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại 2 điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và 2 đường thẳng x=0, x=2 có diện tích bằng 28 5 (phần gạch chéo trong hình vẽ)
A. 2 5
B. 1 9
C. 2 9
D. 1 5