Tính đạo hàm cấp n n ≥ 1 của hàm số y = sin a x + b
A. y n = a sin a n x + b + n π 2
B. y n = a n sin a n x + b + n π 2
C. y n = a n sin a x + b n + n π 2
D. y n = a sin a n x + b n + n π 2
Tính I = lim x → a sin x - sin a x - a .
A. I = cos a
B. I = sin a
C. I = 2 cos a
D. I = sin a . cos a
Cho hàm số f(x) có đạo hàm f'(x) liên tục trên R và có đồ thị của hàm số f'(x) như hình vẽ. Biết ∫ 0 3 x + 1 f ' x d x = a và ∫ 0 1 f ' x d x = b , ∫ 1 3 f ' x d x = c , f 1 = d . Tích phân ∫ 0 3 f x d x bằng
A. -a+b+4c-5d.
B. -a+b-3c+2d.
C. -a+b-4c+3d.
D. -a-b-4c+5d.
Cho hàm số y = f(x) đạo hàm f’(x) = –x2 – 1. Với các số thực dương a, b thỏa mãn a<b. Giá trị nhỏ nhất của hàm số f(x) trên đoạn [a;b] bằng
A. f(b)
B. f( a b )
C. f(a)
D. f( a + b 2 )
Cho hàm số f (x) liên tục và có đạo hàm trên 1 2 ; 1 thỏa mãn f ' (x) = 1 x x - 2 . Biết f(1) = 1, f( = ln 1 a ln 3 + b , ( a , b ∈ ). Tổng a + b bằng
A. 2
B. 3
C. - 2
D. - 3
Cho hàm số y = f ( x ) có đạo hàm trên khoảng a ; b . Xét các mệnh đề sau:
I. Nếu hàm số y = f ( x ) đồng biến trên khoảng a ; b thì f ' x > 0 , ∀ x ∈ a ; b .
II. Nếu f ' x < 0 , ∀ x ∈ a ; b thì hàm số y = f ( x ) nghịch biến trên khoảng a ; b .
III. Nếu hàm số y = f ( x ) liên tục trên a ; b và f ' x > 0 , ∀ x ∈ a ; b thì hàm số y = f ( x ) đồng biến trên đoạn a ; b .
Số mệnh đề đúng là:
A. 3
B. 0
C. 2
D. 1
Cho hàm số f(x) có đạo hàm f'(x) liên tục trên [a;b] và f(b)=5 và ∫ a b f ' ( x ) d x = 3 5 . Tính f(a).
A. f(a)= 5 ( 5 -3)
B. f(a)=3 5
C. f(a)= 5 (3- 5 )
D. f(a)= 3 ( 5 -3)
Cho các mệnh đề :
1) Hàm số y=f(x) có đạo hàm tại điểm x 0 thì nó liến tục tại x 0 .
2) Hàm số y=f(x) liên tục tại x 0 thì nó có đạo hàm tại điểm x 0 .
3) Hàm số y=f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì phương trình f(x) có ít nhất một nghiệm trên khoảng (a;b).
4) Hàm số y=f(x) xác định trên đoạn [a;b] thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
Số mệnh đề đúng là:
A. 2
B. 4
C. 3
D. 1
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [a;b] và f (a)= - 2 ; f (b) = - 4 Tính T = ∫ a b f ' x dx
A. T= -6
B. T =2
C. T= 6
D. T= -2