⇒ ∫ 1 x f ' x 1 + f x 2 f x 4 d x = ∫ 1 x x − 1 2 d x , ∀ x ∈ 1 ; 3 ⇔ ∫ 1 x 1 f x 4 + 2 f x 3 + 1 f x 2 d f x = x − 1 3 3 x 1 ⇔ − 1 3 f x 3 − 2 2 f x 2 − 1 f x x 1 = x − 1 3 3 − 0 3 ⇔ − 1 3 f x 3 − 2 2 f x 2 − 1 f x − − 1 3 f 1 3 − 2 2 f 1 2 − 1 f 1 = x − 1 3 3 ⇔ − 1 3 f x 3 − 2 2 f x 2 − 1 f x − 1 3 − 1 + 1 = x − 1 3 3 ⇔ − 1 3 f x 3 − 2 2 f x 2 − 1 f x = x − 1 3 + 1 3 ⇔ 1 3 − 1 f x 3 − − 1 f x 2 + − 1 f x = 1 3 x 3 − x 2 + x ( * )